# Modular Curves and Minimal Discriminants 

or, Modulus Curveous and the Minimus Discriminus

Alvaro Cornejo ${ }^{1}$ Owen Ekblad ${ }^{2}$ Marietta Geist ${ }^{3}$ Kayla Harrison ${ }^{4}$ Abby Loe ${ }^{3}$

## Outline

(1) Introduction

2 Five Students Performed Math Research One Summer, Not Even COLLEGE Professors Expected What Happened Next!

3 We Found the Minimal Discriminant of $X_{0}$ (8) Using THESE
3) Crazy Techniques! You Won't Believe How We Got $\Delta_{E_{2}}^{\min }$ !
(4) These 2 Simple Ratios May Solve One of the World's Hardest Math Problems!
(5) Looking at Szpiro Ratios

## Introduction

## Definitions

## Definition (Weierstrass Equation)

A Weierstrass model is an implicit function $E$ of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where each $a_{j}$ is a rational number.

## Definitions

## Definition (Weierstrass Equation)

A Weierstrass model is an implicit function $E$ of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where each $a_{j}$ is a rational number.

- When $E$ is differentiable at every point on the curve, we say that $E$ is non-singular.


## Definitions

## Definition (Weierstrass Equation)

A Weierstrass model is an implicit function $E$ of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where each $a_{j}$ is a rational number.

- When $E$ is differentiable at every point on the curve, we say that $E$ is non-singular.
- Conversely, when $E$ is not differentiable everywhere, we say that $E$ is singular.


## Example of Non-Singular Weierstrass Model

```
assets/nonsingularexamples.PNG
```

Figure: A non-singular Weierstrass model

## Examples of Singular Curves

```
assets/singularexamples.PNG
```

Figure: Two singular curves,

$$
y^{2}=x^{3}-3 x^{2}+3 x-1 \text { and } y^{2}=x^{3}+x^{2}
$$

## Elliptic Curves

## Definition (Elliptic Curve)

Suppose that $E$ is a non-singular Weierstrass equation. Intuitively, a rational elliptic curve is the graph of $E$ together with a point $\mathcal{O}$ not on the curve that is said to be the "point at infinity."

## Elliptic Curves

## Definition (Elliptic Curve)

Suppose that $E$ is a non-singular Weierstrass equation. Intuitively, a rational elliptic curve is the graph of $E$ together with a point $\mathcal{O}$ not on the curve that is said to be the "point at infinity."

- We can define an elliptic curve over any arbitrary field $K$, but this summer we focused on elliptic curves defined over the rational numbers.


## Elliptic Curves

## Definition (Elliptic Curve)

Suppose that $E$ is a non-singular Weierstrass equation. Intuitively, a rational elliptic curve is the graph of $E$ together with a point $\mathcal{O}$ not on the curve that is said to be the "point at infinity."

- We can define an elliptic curve over any arbitrary field $K$, but this summer we focused on elliptic curves defined over the rational numbers.
- We can also think about the rational points on elliptic curves!


## Elliptic Curves

## Definition (Elliptic Curve)

Suppose that $E$ is a non-singular Weierstrass equation. Intuitively, a rational elliptic curve is the graph of $E$ together with a point $\mathcal{O}$ not on the curve that is said to be the "point at infinity."

- We can define an elliptic curve over any arbitrary field $K$, but this summer we focused on elliptic curves defined over the rational numbers.
- We can also think about the rational points on elliptic curves!


## Elliptic Curves

## Definition (Elliptic Curve)

Suppose that $E$ is a non-singular Weierstrass equation. Intuitively, a rational elliptic curve is the graph of $E$ together with a point $\mathcal{O}$ not on the curve that is said to be the "point at infinity."

- We can define an elliptic curve over any arbitrary field $K$, but this summer we focused on elliptic curves defined over the rational numbers.
- We can also think about the rational points on elliptic curves!


## Definition (Q-rational Points)

The $\mathbb{Q}$-rational points are

$$
E(\mathbb{Q})=\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\}
$$

$\mathbb{Q}$-rational points

## The Group Law

We can define a group

## The Group Law

We can define a group

## Definition

Let $E$ be an elliptic curve, and let $P$ and $Q$ be rational points on $E$. We define a group $(E, \oplus)$ by drawing a secant line through $P, Q . R$ is where the secant line intersects $E . P \oplus Q$ is the intersection of $E$ and the secant line through $R, \mathcal{O}_{E}$.

## The Group Law



Figure: Group Law on Elliptic Curves

## The Group Law

The identity is $\mathcal{O}_{E}$.
$P \oplus P$ is found not with a secant line, but with a tangent line.

## Torsion Subgroup

## Definition (Torsion Subgroup)

Let $G$ be a group. The subgroup of $G$ containing all elements of finite order in $G$ is called the torsion subgroup of $G$ and is denoted by $G_{\text {tors }}$.

Elliptic curves with nontrivial torsion subgroups are worthy of study

## Torsion Subgroup

## Definition (Torsion Subgroup)

Let $G$ be a group. The subgroup of $G$ containing all elements of finite order in $G$ is called the torsion subgroup of $G$ and is denoted by $G_{\text {tors }}$.

Elliptic curves with nontrivial torsion subgroups are worthy of study

## Torsion Subgroup

## Definition (Torsion Subgroup)

Let $G$ be a group. The subgroup of $G$ containing all elements of finite order in $G$ is called the torsion subgroup of $G$ and is denoted by $G_{\text {tors }}$.

Elliptic curves with nontrivial torsion subgroups are worthy of study

## Theorem (Mazur's Torsion Theorem)

Let $E$ be a rational elliptic curve and let $C_{N}$ denote the cyclic group of $N$ elements. Then

$$
E(\mathbb{Q})_{\text {tors }} \cong\left\{\begin{array}{l}
C_{N} \text { for } N=1,2, \ldots, 10,12 \\
C_{2} \times C_{2 N} \quad \text { for } N=1,2,3,4
\end{array}\right.
$$

## Torsion Subgroup

## Definition (Torsion Subgroup)

Let $G$ be a group. The subgroup of $G$ containing all elements of finite order in $G$ is called the torsion subgroup of $G$ and is denoted by $G_{\text {tors }}$.

Elliptic curves with nontrivial torsion subgroups are worthy of study

## Theorem (Mazur's Torsion Theorem)

Let $E$ be a rational elliptic curve and let $C_{N}$ denote the cyclic group of $N$ elements. Then

$$
E(\mathbb{Q})_{\text {tors }} \cong\left\{\begin{array}{l}
C_{N} \text { for } N=1,2, \ldots, 10,12 \\
C_{2} \times C_{2 N} \text { for } N=1,2,3,4
\end{array}\right.
$$

## Torsion Subgroup

## Definition (Torsion Subgroup)

Let $G$ be a group. The subgroup of $G$ containing all elements of finite order in $G$ is called the torsion subgroup of $G$ and is denoted by $G_{\text {tors }}$.

Elliptic curves with nontrivial torsion subgroups are worthy of study

## Theorem (Mazur's Torsion Theorem)

Let $E$ be a rational elliptic curve and let $C_{N}$ denote the cyclic group of $N$ elements. Then

$$
E(\mathbb{Q})_{\text {tors }} \cong\left\{\begin{array}{l}
C_{N} \text { for } N=1,2, \ldots, 10,12 \\
C_{2} \times C_{2 N} \text { for } N=1,2,3,4
\end{array}\right.
$$

Remark If we define an elliptic curve over two different fields, it is possible that the cyclic subgroups are different.

## Isomorphism

## Definition $\left(c_{4}, c_{6}, \Delta\right)$

We define $c_{4}, c_{6}, \Delta$ as the following:

$$
\begin{aligned}
& c_{4}=a_{1}^{4}+8 a_{1}^{2} a_{2}-24 a_{3} a_{1}+16 a_{2}^{2}-48 a_{4} \\
& c_{6}=-\left(a_{1}^{2}+4 a_{2}\right)^{3}+36\left(a_{1}^{2}+4 a_{2}\right)\left(2 a_{4}+a_{1} a_{3}\right)-216\left(a_{3}^{2}+4 a_{6}\right) \\
& \Delta=\frac{c_{4}^{3}-c_{6}^{2}}{1728},(\text { we call } \Delta \text { the discriminant of } E)
\end{aligned}
$$

## Isomorphism

Definition $\left(c_{4}, c_{6}, \Delta\right)$
We define $c_{4}, c_{6}, \Delta$ as the following:

$$
\begin{aligned}
& c_{4}=a_{1}^{4}+8 a_{1}^{2} a_{2}-24 a_{3} a_{1}+16 a_{2}^{2}-48 a_{4} \\
& c_{6}=-\left(a_{1}^{2}+4 a_{2}\right)^{3}+36\left(a_{1}^{2}+4 a_{2}\right)\left(2 a_{4}+a_{1} a_{3}\right)-216\left(a_{3}^{2}+4 a_{6}\right) \\
& \Delta=\frac{c_{4}^{3}-c_{6}^{2}}{1728},(\text { we call } \Delta \text { the discriminant of } E)
\end{aligned}
$$

## Definition (Isomorphism)

We say that $\phi: G \rightarrow H$ is an isomorphism if $\phi$ preserves group structure.

## Isomorphism

Definition $\left(c_{4}, c_{6}, \Delta\right)$
We define $c_{4}, c_{6}, \Delta$ as the following:

$$
\begin{aligned}
& c_{4}=a_{1}^{4}+8 a_{1}^{2} a_{2}-24 a_{3} a_{1}+16 a_{2}^{2}-48 a_{4} \\
& c_{6}=-\left(a_{1}^{2}+4 a_{2}\right)^{3}+36\left(a_{1}^{2}+4 a_{2}\right)\left(2 a_{4}+a_{1} a_{3}\right)-216\left(a_{3}^{2}+4 a_{6}\right) \\
& \Delta=\frac{c_{4}^{3}-c_{6}^{2}}{1728},(\text { we call } \Delta \text { the discriminant of } E)
\end{aligned}
$$

## Definition (Isomorphism)

We say that $\phi: G \rightarrow H$ is an isomorphism if $\phi$ preserves group structure.

## Isomorphism

Definition $\left(c_{4}, c_{6}, \Delta\right)$
We define $c_{4}, c_{6}, \Delta$ as the following:

$$
\begin{aligned}
& c_{4}=a_{1}^{4}+8 a_{1}^{2} a_{2}-24 a_{3} a_{1}+16 a_{2}^{2}-48 a_{4} \\
& c_{6}=-\left(a_{1}^{2}+4 a_{2}\right)^{3}+36\left(a_{1}^{2}+4 a_{2}\right)\left(2 a_{4}+a_{1} a_{3}\right)-216\left(a_{3}^{2}+4 a_{6}\right) \\
& \Delta=\frac{c_{4}^{3}-c_{6}^{2}}{1728},(\text { we call } \Delta \text { the discriminant of } E)
\end{aligned}
$$

## Definition (Isomorphism)

We say that $\phi: G \rightarrow H$ is an isomorphism if $\phi$ preserves group structure.

## Definition

We define the $j$-invariant of an elliptic curve $E$ to be

$$
j=\frac{c_{4}^{3}}{\Delta}
$$

## Isomorphism

Definition $\left(c_{4}, c_{6}, \Delta\right)$
We define $c_{4}, c_{6}, \Delta$ as the following:

$$
\begin{aligned}
& c_{4}=a_{1}^{4}+8 a_{1}^{2} a_{2}-24 a_{3} a_{1}+16 a_{2}^{2}-48 a_{4} \\
& c_{6}=-\left(a_{1}^{2}+4 a_{2}\right)^{3}+36\left(a_{1}^{2}+4 a_{2}\right)\left(2 a_{4}+a_{1} a_{3}\right)-216\left(a_{3}^{2}+4 a_{6}\right) \\
& \Delta=\frac{c_{4}^{3}-c_{6}^{2}}{1728},(\text { we call } \Delta \text { the discriminant of } E)
\end{aligned}
$$

## Definition (Isomorphism)

We say that $\phi: G \rightarrow H$ is an isomorphism if $\phi$ preserves group structure.

## Definition

We define the $j$-invariant of an elliptic curve $E$ to be

$$
j=\frac{c_{4}^{3}}{\Delta}
$$

## Isomorphism

Definition $\left(c_{4}, c_{6}, \Delta\right)$
We define $c_{4}, c_{6}, \Delta$ as the following:

$$
\begin{aligned}
& c_{4}=a_{1}^{4}+8 a_{1}^{2} a_{2}-24 a_{3} a_{1}+16 a_{2}^{2}-48 a_{4} \\
& c_{6}=-\left(a_{1}^{2}+4 a_{2}\right)^{3}+36\left(a_{1}^{2}+4 a_{2}\right)\left(2 a_{4}+a_{1} a_{3}\right)-216\left(a_{3}^{2}+4 a_{6}\right) \\
& \Delta=\frac{c_{4}^{3}-c_{6}^{2}}{1728},(\text { we call } \Delta \text { the discriminant of } E)
\end{aligned}
$$

## Definition (Isomorphism)

We say that $\phi: G \rightarrow H$ is an isomorphism if $\phi$ preserves group structure.

## Definition

We define the $j$-invariant of an elliptic curve $E$ to be

$$
j=\frac{c_{4}^{3}}{\Delta}
$$

- When the $j$-invariants of two elliptic curves are the same we can say they are isomorphic over $\mathbb{C}$. However, this does not mean they are isomorphic over $\mathbb{Q}$.
- When the $j$-invariants of two elliptic curves are the same we can say they are isomorphic over $\mathbb{C}$. However, this does not mean they are isomorphic over $\mathbb{Q}$.
$y^{2}=x^{3}+1$ and $y^{2}=x^{3}-1$ have the same $j$-invariant of zero, but they are not $\mathbb{Q}$-isomorphic.
- When the $j$-invariants of two elliptic curves are the same we can say they are isomorphic over $\mathbb{C}$. However, this does not mean they are isomorphic over $\mathbb{Q}$.
$y^{2}=x^{3}+1$ and $y^{2}=x^{3}-1$ have the same $j$-invariant of zero, but they are not $\mathbb{Q}$-isomorphic.
- Instead, we find that if we map $(x, y) \mapsto\left(i^{2} x, i^{3} y\right)$, and $E_{1}, E_{2}$ are isomorphic over $\mathbb{Q}(i)$


## The Admissible Change of Variables

## Proposition

Let $K$ be a field, and $E$ and $E^{\prime}$ be elliptic curves defined by a Weierstrass model. If $\phi: E \rightarrow E^{\prime}$ is a K-isomorphism such that $\phi\left(\mathcal{O}_{E}\right)=\phi\left(\mathcal{O}_{E^{\prime}}\right)$, then $\phi(x, y)=\left(u^{2} x+r, u^{3} y+u^{2} s x+w\right)$ where $u, s, r, w \in K$.

## The Admissible Change of Variables

## Proposition

Let $K$ be a field, and $E$ and $E^{\prime}$ be elliptic curves defined by a Weierstrass model. If $\phi: E \rightarrow E^{\prime}$ is a K-isomorphism such that $\phi\left(\mathcal{O}_{E}\right)=\phi\left(\mathcal{O}_{E^{\prime}}\right)$, then $\phi(x, y)=\left(u^{2} x+r, u^{3} y+u^{2} s x+w\right)$ where $u, s, r, w \in K$.

Remark Notice that $r$ and $w$ translate the elliptic curve, $s$ scales the $y$ value, and $u$ scales both the $x$ and $y$ values.

## The Admissible Change of Variables

## Proposition

Let $K$ be a field, and $E$ and $E^{\prime}$ be elliptic curves defined by a Weierstrass model. If $\phi: E \rightarrow E^{\prime}$ is a K-isomorphism such that $\phi\left(\mathcal{O}_{E}\right)=\phi\left(\mathcal{O}_{E^{\prime}}\right)$, then $\phi(x, y)=\left(u^{2} x+r, u^{3} y+u^{2} s x+w\right)$ where $u, s, r, w \in K$.

Remark Notice that $r$ and $w$ translate the elliptic curve, $s$ scales the $y$ value, and $u$ scales both the $x$ and $y$ values.

## The Admissible Change of Variables

## Proposition

Let $K$ be a field, and $E$ and $E^{\prime}$ be elliptic curves defined by a Weierstrass model. If $\phi: E \rightarrow E^{\prime}$ is a K-isomorphism such that $\phi\left(\mathcal{O}_{E}\right)=\phi\left(\mathcal{O}_{E^{\prime}}\right)$, then $\phi(x, y)=\left(u^{2} x+r, u^{3} y+u^{2} s x+w\right)$ where $u, s, r, w \in K$.

Remark Notice that $r$ and $w$ translate the elliptic curve, $s$ scales the $y$ value, and $u$ scales both the $x$ and $y$ values.
Remark If $\Delta, c_{4}, c_{6}$ are associated to $E$ and $\Delta^{\prime}, c_{4}^{\prime}, c_{6}^{\prime}$ are associated to $E^{\prime}$, then we have the relations:

$$
\Delta^{\prime}=u^{-12} \Delta, \quad c_{6}^{\prime}=u^{-6} c_{6}, \quad c_{4}^{\prime}=u^{-4} c_{4}
$$

## Applications

## Example

Let $E_{1}$ and $E_{2}$ be elliptic curves defined over the rational numbers

$$
\begin{aligned}
E_{1}: y^{2}+x y+y & =x^{3}+x^{2}+x+1 \\
E_{2}: y^{2}+\frac{27}{5} x y+\frac{51}{125} y & =x^{3}-\frac{157}{25} x^{2}-\frac{19}{25} x-\frac{9}{3125}
\end{aligned}
$$

There is an isomorphism $\phi: E_{1} \leftrightarrow E_{2}$ by $(x, y) \mapsto\left(u^{2} x+r, u^{3} y+u^{2} s x+w\right)$ where $u=5, s=8, r=13, t=21$.

## Applications

## Example

Let $E_{1}$ and $E_{2}$ be elliptic curves defined over the rational numbers

$$
\begin{aligned}
E_{1}: y^{2}+x y+y & =x^{3}+x^{2}+x+1 \\
E_{2}: y^{2}+\frac{27}{5} x y+\frac{51}{125} y & =x^{3}-\frac{157}{25} x^{2}-\frac{19}{25} x-\frac{9}{3125}
\end{aligned}
$$

There is an isomorphism $\phi: E_{1} \leftrightarrow E_{2}$ by $(x, y) \mapsto\left(u^{2} x+r, u^{3} y+u^{2} s x+w\right)$ where $u=5, s=8, r=13, t=21$.

- Recall that the j-invariant fails for $\mathbb{Q}$-isomorphisms.


## Applications

## Example

Let $E_{1}$ and $E_{2}$ be elliptic curves defined over the rational numbers

$$
\begin{gathered}
E_{1}: y^{2}+x y+y=x^{3}+x^{2}+x+1 \\
E_{2}: y^{2}+\frac{27}{5} x y+\frac{51}{125} y=x^{3}-\frac{157}{25} x^{2}-\frac{19}{25} x-\frac{9}{3125}
\end{gathered}
$$

There is an isomorphism $\phi: E_{1} \leftrightarrow E_{2}$ by $(x, y) \mapsto\left(u^{2} x+r, u^{3} y+u^{2} s x+w\right)$ where

$$
u=5, s=8, r=13, t=21
$$

- Recall that the j-invariant fails for $\mathbb{Q}$-isomorphisms.

The admissible change of variables provides us with a useful way to translate over $\mathbb{Q}$-isomorphic curves.

## Global Minimal Model and Minimal Discriminant

## Definition

Let $E$ be a rational elliptic curve given by

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

We say $E_{\text {min }}$ is a global minimal model of $E$ if

- $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}, c_{4}, c_{6}$, and $\Delta$ are integers
- $|\Delta|$ is minimal over all $\mathbb{Q}$-isomorphic elliptic curves of $E$.

Remark We call $\Delta$ the minimal discriminant of $E_{\text {min }}$ and denote it by $\Delta_{\text {min }}$. Moreover, the quantities $c_{4}$ and $c_{6}$ of a global model are called the associated quantities to a minimal model.

## Additive Reduction and Semistable

Let $E$ be a rational elliptic curve and let $p$ be a prime.
Definition (Additive Reduction)

If $p$ divides $\operatorname{gcd}\left(c_{4}, \Delta\right)$ then we say that $E$ has additive reduction at $p$

## Definition (Semistable)

If $p$ does not divide $\operatorname{gcd}\left(c_{4}, \Delta\right)$ then we say that $E$ is semistable at a point $p$. We call $E$ semistable if $E$ is semistable at all primes.

## The Conductor

## Definition (The Conductor)

We define the conductor of a rational elliptic curve $E$ to be

$$
N_{E}=\prod_{p \mid \Delta_{E}^{\text {min }}} p^{f_{p}}
$$

Where $f_{p}=\left\{\begin{array}{l}1 \text { if } E \text { is semistable at } p \\ 2+\delta_{p} \text { if } E \text { has additive reduction at } p\end{array}\right.$
and $\delta$ is a function that depends on the primes.

$$
\text { For } p \geq 5, \delta_{p}=0 \text {. For } p=2, \delta_{p} \leq 6 \text { and for } p=3, \delta_{p} \leq 3
$$

## The Conductor

## Definition (The Conductor)

We define the conductor of a rational elliptic curve $E$ to be

$$
N_{E}=\prod_{p \mid \Delta_{E}^{\text {min }}} p^{f_{p}}
$$

Where $f_{p}=\left\{\begin{array}{l}1 \text { if } E \text { is semistable at } p \\ 2+\delta_{p} \text { if } E \text { has additive reduction at } p\end{array}\right.$
and $\delta$ is a function that depends on the primes.

$$
\text { For } p \geq 5, \delta_{p}=0 \text {. For } p=2, \delta_{p} \leq 6 \text { and for } p=3, \delta_{p} \leq 3
$$

## The Conductor

## Definition (The Conductor)

We define the conductor of a rational elliptic curve $E$ to be

$$
N_{E}=\prod_{p \mid \Delta_{E}^{\text {min }}} p^{f_{p}}
$$

Where $f_{p}=\left\{\begin{array}{l}1 \text { if } E \text { is semistable at } p \\ 2+\delta_{p} \text { if } E \text { has additive reduction at } p\end{array}\right.$
and $\delta$ is a function that depends on the primes.

For $p \geq 5, \delta_{p}=0$. For $p=2, \delta_{p} \leq 6$ and for $p=3, \delta_{p} \leq 3$.
Remark If $E$ is semistable, then $N_{E}=\operatorname{rad}\left(\Delta_{E}^{\min }\right)$.

## Isogeny

## Definition

A $\mathbb{Q}$-isogeny between two elliptic curves $E_{1}$ and $E_{2}$ is a morphism $\varphi: E_{1} \rightarrow E_{2}$ where $\varphi$ is defined over $\mathbb{Q}$. $E_{1}$ and $E_{2}$ are said to be isogenous

## Isogeny

## Definition

A $\mathbb{Q}$-isogeny between two elliptic curves $E_{1}$ and $E_{2}$ is a morphism $\varphi: E_{1} \rightarrow E_{2}$ where $\varphi$ is defined over $\mathbb{Q}$. $E_{1}$ and $E_{2}$ are said to be isogenous

## Definition

If two elliptic curves, $E_{1}$ and $E_{2}$, are isogenous then $N_{E_{1}}=N_{E_{2}}$

## Isogeny

## Definition

A $\mathbb{Q}$-isogeny between two elliptic curves $E_{1}$ and $E_{2}$ is a morphism $\varphi: E_{1} \rightarrow E_{2}$ where $\varphi$ is defined over $\mathbb{Q}$. $E_{1}$ and $E_{2}$ are said to be isogenous

## Definition

If two elliptic curves, $E_{1}$ and $E_{2}$, are isogenous then $N_{E_{1}}=N_{E_{2}}$

## Isogeny

## Definition

A $\mathbb{Q}$-isogeny between two elliptic curves $E_{1}$ and $E_{2}$ is a morphism $\varphi: E_{1} \rightarrow E_{2}$ where $\varphi$ is defined over $\mathbb{Q}$. $E_{1}$ and $E_{2}$ are said to be isogenous

## Definition

If two elliptic curves, $E_{1}$ and $E_{2}$, are isogenous then $N_{E_{1}}=N_{E_{2}}$

## Proposition

We say two curves are in the same isogeny class if they are isogenous.

## Reduced Minimal Model

## Definition (Reduced minimal model)

Let $E$ be a rational elliptic curve. The reduced minimal model of $E$ is given by a Weierstrass model

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

which is a global minimal model of $E$ such that $a_{1}, a_{3} \in\{0,1\}$ and $a_{2} \in\{-1,0,1\}$

Note: The reduced minimal model of a rational elliptic curve is unique!

## Definition ( $p$-adic valuation)

Let $p$ be a prime. The $p$-adic valuation

$$
v_{p}: \mathbb{Z} \rightarrow \mathbb{Z}_{\geq 0} \cup\{\infty\}
$$

is defined as

$$
v_{p}(n)= \begin{cases}\max \left\{v \in \mathbb{Z}_{\geq 0}: p^{v} \mid n\right\} & \text { if } n \neq 0 \\ \infty & \text { if } n=0\end{cases}
$$

The $p$-adic valuation of an integer $n$ can be thought of intuitively as the highest power of $p$ occurring within the prime power decomposition of $n$.

## Example ( $v_{p}(24)$ for $p=2,3$ and 5 )

$$
\begin{aligned}
& v_{2}(24)=v_{2}\left(2^{3} \cdot 3^{1}\right) \quad v_{3}(24)=v_{3}\left(2^{3} \cdot 3^{1}\right) \quad v_{5}(24)=v_{5}\left(2^{3} \cdot 3^{1}\right) \\
& =3 \\
& =1 \\
& =\text { ? }
\end{aligned}
$$

## Example ( $v_{p}(24)$ for $p=2,3$ and 5 )

$$
\begin{aligned}
& v_{2}(24)=v_{2}\left(2^{3} \cdot 3^{1}\right) \\
& v_{3}(24)=v_{3}\left(2^{3} \cdot 3^{1}\right) \\
& v_{5}(24)=v_{5}\left(2^{3} \cdot 3^{1}\right) \\
& =3 \\
& =1 \\
& =\text { ? }
\end{aligned}
$$

There are no powers of 5 contained in 24 , therefore we have that $v_{5}(24)=0$.

## Example ( $v_{p}(24)$ for $p=2,3$ and 5 )

$$
\begin{aligned}
& v_{2}(24)=v_{2}\left(2^{3} \cdot 3^{1}\right) \\
& v_{3}(24)=v_{3}\left(2^{3} \cdot 3^{1}\right) \\
& v_{5}(24)=v_{5}\left(2^{3} \cdot 3^{1}\right) \\
& =3 \\
& =1 \\
& =\text { ? }
\end{aligned}
$$

There are no powers of 5 contained in 24 , therefore we have that $v_{5}(24)=0$.

## Example ( $v_{p}(24)$ for $p=2,3$ and 5 )

$$
\begin{aligned}
& v_{2}(24)=v_{2}\left(2^{3} \cdot 3^{1}\right) \\
& =3 \\
& v_{3}(24)=v_{3}\left(2^{3} \cdot 3^{1}\right) \\
& v_{5}(24)=v_{5}\left(2^{3} \cdot 3^{1}\right) \\
& =1 \\
& =\text { ? }
\end{aligned}
$$

There are no powers of 5 contained in 24 , therefore we have that $v_{5}(24)=0$.
Remark We have the identity $v_{p}(a b)=v_{p}(a)+v_{p}(b)$, where $a, b$ are integers (or, integral-valued functions).

## Kraus' Theorem

## Theorem (Kraus)

Let $\alpha, \beta$, and $\gamma$ be integers such that $\alpha^{3}-\beta^{2}=1728 \gamma$, with $\gamma \neq 0$. Then there exists a rational elliptic curve $E$ given by an integral Weierstrass equation having invariants $\mathrm{c}_{4}=\alpha$ and $c_{6}=\beta$ if and only if the following hold:
(i) $v_{3}(\beta) \neq 2$
(ii) either $\beta \equiv-1 \bmod 4$ or both $v_{2}(\alpha) \geq 4$ and $\beta \equiv 0$ or $8 \bmod 32$

## Quadratic Twists

## Definition

We say two elliptic curves $E$ and $E^{\prime}$ are twists of each other if $j(E)=j\left(E^{\prime}\right)$

We use the quadratic twist in order to truly classify the minimal discriminants of rational elliptic curves, as they give the full picture of the equivalence classes in $X_{0}(N)$

## Visualizing the Twist



Figure: Two Quadratic Twists,

$$
y^{2}=x^{3}+1 \text { and } y^{2}=x^{3}-1
$$

## $X_{0}(N)$

## Definition (The Modular Curve $X_{0}(N)$ )

The Modular Curve $X_{0}(N)$ for $N \geq 2$ parameterizes isomorphism classes of triples $\left(E, E^{\prime}, \pi\right)$ where $\pi: E \rightarrow E^{\prime}$ is an isogeny with $\operatorname{ker}(\pi) \cong C_{N}$.

## Definition

By an isomorphism class of triples we mean that $\left(E_{1}, E_{1}^{\prime}, \pi_{1}\right) \sim\left(E_{2}, E_{2}^{\prime}, \pi_{2}\right)$ if and only if there are isomorphisms $\varphi: E_{1} \rightarrow E_{2}, \varphi^{\prime}: E_{1}^{\prime} \rightarrow E_{2}^{\prime}$ such that $\pi_{2} \circ \varphi=\varphi^{\prime} \circ \pi_{1}$

Remark This definition is not the one found in the literature, these have been translated into the ones above

## Parametrizing Elliptic Curves

- We have that the modular curve $X_{0}(N)$ is genus 0 if and only if $N=1,2, \cdots, 10,12,13,16,18,25$.


## Theorem

Let $X_{0}(N)$ be a genus 0 modular curve. Then there is a birational map $\varphi: \mathbb{P}^{1}(\mathbb{Q}) \rightarrow X_{0}(N)$ defined by $\varphi(t: 1)=\left(E_{1}(t), E_{2}(t), \pi_{t}\right)$ with the property that if $t \in \mathbb{Q}$ then $E_{1}(t)$ and $E_{2}(t)$ are elliptic curves over $\mathbb{Q}$ with $\pi_{t}: E_{1}(t) \rightarrow E_{2}(t)$ as a $\mathbb{Q}$-isogeny with ker $\pi_{t} \cong C_{N}$

- Recall that intuitively we have $\mathbb{P}^{1}(\mathbb{Q})=\mathbb{Q} \cup\{\mathcal{O}\}$


# Five Students Performed Math Research One Summer, Not Even COLLEGE Professors Expected What Happened Next! 

## The Results!

## Theorem

Let $a$ and $b$ be relatively prime integers $E_{N, j}$ be as defined above and suppose that

$$
\begin{array}{lll}
f_{5}=125 a^{2}+22 a b+b^{2} & \text { is fourth-power free } & \text { if } N=5 \\
f_{7}=49 a^{2}+13 a b+b^{2} & \text { is sixth-power free } & \text { if } N=7 \\
f_{13}=\left(13 a^{2}+5 a b+b^{2}\right)\left(13 a^{2}+6 a b+b^{2}\right) & \text { is sixth-power free } & \text { if } N=13
\end{array}
$$

The minimal discriminant of $E_{N, j}$ is $u_{N, j}^{-12} \Delta_{N, j}$ where $u_{N, j}$ is one of the possibilities given below

| $(N, 1)$ | $(5,1)$ | $(6,1)$ | $(7,1)$ | $(8,1)$ | $(9,1)$ | $(13,1)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $u_{N, 1}$ divides | 50 | 6 | 98 | 8 | 9 | 26 |


| $(N, 2)$ | $(5,2)$ | $(6,2)$ | $(7,2)$ | $(8,2)$ | $(9,2)$ | $(13,2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $u_{N, 2}$ divides | 10 | 4 | 14 | 2 | 3 | 26 |

## Theorem

Moreover, there are necessary and sufficient conditions on $a, b$ to determine exactly the value of $u_{N, j}$ as summarized in the following tables

| $(N, j)$ |  |  | Conditions on $u_{N, j}$ |
| :--- | :--- | :--- | :--- |
| $(5,1)$ | $u_{N, j}=50$ | $\Longleftrightarrow$ | $v_{5}(b) \geq 3$ with $a$ odd |
|  | $u_{N, j}=25$ | $\Longleftrightarrow$ | $v_{5}(b) \geq 3$ with $a$ even |
|  | $u_{N, j}=5$ | $\Longleftrightarrow$ | $v_{5}(b)=2$ |
|  | $u_{N, j}=2$ | $\Longleftrightarrow$ | $v_{5}(b)=1$ with $a$ odd |
|  | $u_{N, j}=1$ | $\Longleftrightarrow$ | $v_{5}(b)=1$ with $a$ even or $v_{5}(b)=0$ |
| $(5,2)$ | $u_{N, j}=10$ | $\Longleftrightarrow$ | $v_{5}(b) \geq 3$ with $a$ odd |
|  | $u_{N, j}=5$ | $\Longleftrightarrow$ | $v_{5}(b) \geq 3$ with $a$ even |
|  | $u_{N, j}=2$ | $\Longleftrightarrow$ | $v_{5}(b) \leq 2$ with $a$ odd |
|  | $u_{N, j}=1$ | $\Longleftrightarrow$ | $v_{5}(b) \leq 2$ with $a$ even |
| $(6,1)$ | $u_{N, j}=6$ | $\Longleftrightarrow$ | $b$ is even and $v_{3}(b)=1$ with $\frac{a b}{3} \equiv 2 \bmod 3$ |
|  | $u_{N, j}=3$ | $\Longleftrightarrow$ | $b$ is odd and $v_{3}(b)=1$ with $\frac{a b}{3} \equiv 2 \bmod 3$ |
|  | $u_{N, j}=2$ | $\Longleftrightarrow$ | $b$ is even and either $v_{3}(b) \neq 1$ or $v_{3}(b)=1$ with $\frac{a b}{3} \equiv 1 \bmod 3$ |
|  | $u_{N, j}=1$ | $\Longleftrightarrow$ | $b$ is odd and either $v_{3}(b) \neq 1$ or $v_{3}(b)=1$ with $\frac{a b}{3} \equiv 1 \bmod 3$ |
| $(6,2)$ | $u_{N, j}=4$ | $\Longleftrightarrow$ | $v_{2}(b)=1$ |
|  | $u_{N, j}=2$ | $\Longleftrightarrow$ | $v_{2}(b) \geq 2$ |
|  | $u_{N, j}=1$ | $\Longleftrightarrow$ | $v_{2}(b)=0$ |
| $(7,1)$ | $u_{N, j}=98$ | $\Longleftrightarrow$ | $v_{7}(b)=2, v_{7}\left(f_{7}\right)=5$, and $a b \equiv 1,2 \bmod 4$ |
|  | $u_{N, j}=49$ | $\Longleftrightarrow$ | $v_{7}(b)=2, v_{7}\left(f_{7}\right)=5$, and $a b \equiv 0,3 \bmod 4$ |
|  | $u_{N, j}=14$ | $\Longleftrightarrow$ | $v_{7}(b) \geq 3$ and $a b \equiv 1,2 \bmod 4$ |
|  | $u_{N, j}=7$ | $\Longleftrightarrow$ | $v_{7}(b) \geq 3$ and $a b \equiv 0,3 \bmod 4$ |
|  | $u_{N, j}=2$ | $\Longleftrightarrow$ | $4 \nmid a b$ and the above conditions do not hold.. |
|  | $u_{N, j}=1$ | $\Longleftrightarrow$ | the above conditions do not hold. |
|  |  |  |  |

## Theorem

| $(7,2)$ | $\begin{aligned} & u_{N, j}=1 \\ & u_{N, j}=7 \\ & u_{N, j}=2 \\ & u_{N, j}=1 \\ & \hline \end{aligned}$ | $\begin{aligned} & \Longleftrightarrow \\ & \Longleftrightarrow \\ & \Longleftrightarrow \end{aligned}$ | $v_{7}(b)=2, v_{7}\left(f_{7}\right)=5$, and $a b \equiv 1,2 \bmod 4$ $v_{7}(b)=2, v_{7}\left(f_{7}\right)=5$, and $a b \equiv 0,3 \bmod 4$ $a b \equiv 1,2 \bmod 4$ and the above conditions do not hold the above conditions do not hold |
| :---: | :---: | :---: | :---: |
| $(8,1)$ | $\begin{aligned} & u_{N, j}=6 \\ & u_{N, j}=3 \\ & u_{N, j}=2 \\ & u_{N, j}=1 \\ & \hline \end{aligned}$ | $\begin{aligned} & \Longleftrightarrow \\ & \Longleftrightarrow \\ & \Longleftrightarrow \\ & \Longleftrightarrow \end{aligned}$ | $\begin{aligned} & v_{2}(a-b) \geq 3 \\ & v_{2}(a-b)=2 \\ & v_{2}(a-b)=1 \\ & v_{2}(a-b)=0 \end{aligned}$ |
| $(8,2)$ | $\begin{aligned} & u_{N, j}=2 \\ & u_{N, j}=1 \\ & \hline \end{aligned}$ | $\begin{aligned} & \Longleftrightarrow \\ & \Longleftrightarrow \end{aligned}$ | $v_{2}(a) \geq 1 \text { or } v_{2}(a) \geq 4$ <br> otherwise |
| $(9,1)$ | $\begin{aligned} & u_{N, j}=9 \\ & u_{N, j}=3 \\ & u_{N, j}=1 \end{aligned}$ | $\begin{aligned} & \Longleftrightarrow \\ & \Longleftrightarrow \\ & \Longleftrightarrow \end{aligned}$ | $\begin{aligned} & v_{2}(b-a) \geq 2 \\ & v_{2}(b-a)=1 \\ & v_{2}(b-a)=0 \end{aligned}$ |
| $(9,2)$ | $\begin{array}{r} u_{N, j}=3 \\ u_{N, j}=1 \\ \hline \end{array}$ | $\begin{aligned} & \Longleftrightarrow \\ & \Longleftrightarrow \end{aligned}$ | $\begin{aligned} & v_{2}(b-a) \geq 2 \text { or } 3 \mid a \\ & v_{2}(b-a) \leq 1 \text { and } 3 \nmid a \end{aligned}$ |
| (13, j) | $\begin{gathered} u_{N, j}=26 \\ u_{N, j}=13 \\ u_{N, j}=2 \\ u_{N, j}=1 \end{gathered}$ | $\begin{aligned} & \Longleftrightarrow \\ & \Longleftrightarrow \\ & \Longleftrightarrow \\ & \Longleftrightarrow \end{aligned}$ | $v_{13}(b) \geq 1$ and either $b \equiv 2 \bmod 4$ or $v_{2}(a) \geq 2$ <br> $v_{13}(b) \geq 1$ and either $b \not \equiv 2 \bmod 4$ or $v_{2}(a) \leq 1$ <br> $v_{13}(b)=0$ and either $b \equiv 2 \bmod 4$ or $v_{2}(a) \geq 2$ <br> $v_{13}(b) \leq 0$ and either $b \not \equiv 2 \bmod 4$ or $v_{2}(a) \leq 1$ |

## We Found the Minimal Discriminant of $X_{0}(8)$ Using THESE Crazy Techniques! You Won't Believe How We Got $\Delta_{E_{2}}^{\min }$ !

## Parameterization of $E_{1}$ and $E_{2}$ in $X_{0}(8)$

- Define $E_{1}(t)$ as the following:

$$
E_{1}: y^{2}=x^{3}-27 a_{4}^{1}(t) x-54 a_{6}^{1}(t)
$$

Where $a_{4}^{1}=t^{4}+60 t^{3}+134 t^{2}+60 t+1$ and

$$
a_{6}^{1}=\left(t^{4^{4}}-132 t^{3}-250 t^{2}-132 t+1\right)\left(t^{2}+6 t+1\right)
$$

- Similarly define $E_{2}(t)$ as:

$$
E_{2}: y^{2}=x^{3}-27 a_{4}^{2}(t) x-54 a_{6}^{2}(t)
$$

where $a_{4}^{2}=16 t^{4}-16 t^{2}+1$ and $a_{6}^{2}=\left(32 t^{4}-32 t^{2}-1\right)\left(2 t^{2}-1\right)$

## $E_{2}$ in $X_{0}(8)$ as an Example

Take $\left(E_{1}, E_{2}, \pi\right) \in X_{0}(8)$. We have that $E_{2}$ can be parameterized by rational point $t=\frac{b}{a}$ (where $a, b$ are coprime) as the following:

$$
y^{2}=x^{3}+\left(\frac{-27 a^{4}+432 a^{2} b^{2}-432 b^{4}}{a^{4}}\right) x+\frac{-54 a^{6}-1620 a^{4} b^{2}+5184 a^{2} b^{4}-3456 b^{6}}{a^{6}}
$$

## Theorem

The minimal discriminant of $E_{2}$ is $u^{-12} \Delta$ with $u \mid 2$. Moreover,

$$
u=\left\{\begin{array}{l}
2 \text { if and only if } v_{2}(a) \geq 1 \text { or } v_{2}\left(b^{2}-a^{2}\right) \geq 4 \\
1 \Longleftrightarrow v_{2}(a)=0 \text { and } v_{2}\left(b^{2}-a^{2}\right)<4
\end{array}\right.
$$

## Finding the possible GCD's between invariants

Before beginning this proof we will take a small detour into explaining the process of finding the GCD's

## Definition (The Euclidean Algorithm)

Let $R$ be an integral domain (recall an integral domain has no zero-divisors), and let $a, b \in R$ with $b \neq 0$. Then $R$ is a Euclidean Domain if there exists some $q, r \in R$ such that:

$$
a=q b+r
$$

## Finding the possible GCD's between invariants

Before beginning this proof we will take a small detour into explaining the process of finding the GCD's

## Definition (The Euclidean Algorithm)

Let $R$ be an integral domain (recall an integral domain has no zero-divisors), and let $a, b \in R$ with $b \neq 0$. Then $R$ is a Euclidean Domain if there exists some $q, r \in R$ such that:

$$
a=q b+r
$$

Remark There is prime factorization in a Euclidean Domain

## Finding the possible GCD's between invariants

Before beginning this proof we will take a small detour into explaining the process of finding the GCD's

## Definition (The Euclidean Algorithm)

Let $R$ be an integral domain (recall an integral domain has no zero-divisors), and let $a, b \in R$ with $b \neq 0$. Then $R$ is a Euclidean Domain if there exists some $q, r \in R$ such that:

$$
a=q b+r
$$

Remark There is prime factorization in a Euclidean Domain

## Finding the possible GCD's between invariants

Before beginning this proof we will take a small detour into explaining the process of finding the GCD's

## Definition (The Euclidean Algorithm)

Let $R$ be an integral domain (recall an integral domain has no zero-divisors), and let $a, b \in R$ with $b \neq 0$. Then $R$ is a Euclidean Domain if there exists some $q, r \in R$ such that:

$$
a=q b+r
$$

Remark There is prime factorization in a Euclidean Domain

## Theorem (Bezout's Identity)

Let $R$ be a Euclidean domain, $a, b$ be non-zero elements of $R$, and $d=r_{n}$, the last nonzero prime factor for $a$ and $b$. Then $d$ is the greatest common divisor of $a$ and $b$ and there are elements $x, y \in R$ such that $d=a x+$ by

## Finding the possible GCD's between invariants

Before beginning this proof we will take a small detour into explaining the process of finding the GCD's

## Definition (The Euclidean Algorithm)

Let $R$ be an integral domain (recall an integral domain has no zero-divisors), and let $a, b \in R$ with $b \neq 0$. Then $R$ is a Euclidean Domain if there exists some $q, r \in R$ such that:

$$
a=q b+r
$$

Remark There is prime factorization in a Euclidean Domain

## Theorem (Bezout's Identity)

Let $R$ be a Euclidean domain, $a, b$ be non-zero elements of $R$, and $d=r_{n}$, the last nonzero prime factor for $a$ and $b$. Then $d$ is the greatest common divisor of $a$ and $b$ and there are elements $x, y \in R$ such that $d=a x+$ by

Using the Euclidean Algorithm and Wolfram Mathematica, we obtained the greatest common denominators for invariants of various curves and $X_{0}(8)$.

## Proof

## Proposition

For $E$ isomorphic to $E^{\prime}, u^{4}$ divides the greatest common divisor of the invariants associated with $E$. Since $u^{4}$ divides the gcd's between the invariants we find that $u \mid 8$

- We apply the change of variables with $(x, y) \mapsto\left(\left(\frac{3}{a}\right)^{2} x,\left(\frac{3}{a}\right)^{3} y\right)$. There is an integral Weierstrass Model $F$ isomorphic to $E_{2}$ having

$$
\begin{aligned}
c_{4} & =2^{4}\left(a^{4}-16 a^{2} b^{2}+16 b^{4}\right) \\
c_{6} & =2^{6}\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right) \\
\Delta_{8,2} & =2^{8}(-a+b)(a+b) b^{2} a^{8}
\end{aligned}
$$

as its invariants $c_{4}, c_{6}$, and $\Delta$ respectively.

## Recall Kraus' Theorem

## Theorem (Kraus)

Let $\alpha, \beta$, and $\gamma$ be integers such that $\alpha^{3}-\beta^{2}=1728 \gamma$, with $\gamma \neq 0$. Then there exists a rational elliptic curve $E$ given by an integral Weierstrass equation having invariants $c_{4}=\alpha$ and $c_{6}=\beta$ if and only if the following hold:
(i) $v_{3}(\beta) \neq 2$
(ii) either $\beta \equiv-1 \bmod 4$ or both $v_{2}(\alpha) \geq 4$ and $\beta \equiv 0$ or $8 \bmod 32$

## Proof

- Suppose $v_{2}(a) \geq 1$ or $v_{2}\left(b^{2}-a^{2}\right) \geq 4$. This yield the quantities

$$
\begin{aligned}
c_{4}^{\prime} & =2^{-4} c_{4}=\left(a^{4}-16 a^{2} b^{2}+16 b^{4}\right) \\
c_{6}^{\prime} & =2^{-6} c_{6}=\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right) \\
\Delta^{\prime} & =2^{-12} \Delta=2^{-4}(-a+b)(a+b) b^{2} a^{8}
\end{aligned}
$$

## Proof

- Suppose $v_{2}(a) \geq 1$ or $v_{2}\left(b^{2}-a^{2}\right) \geq 4$. This yield the quantities

$$
\begin{aligned}
c_{4}^{\prime} & =2^{-4} c_{4}=\left(a^{4}-16 a^{2} b^{2}+16 b^{4}\right) \\
c_{6}^{\prime} & =2^{-6} c_{6}=\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right) \\
\Delta^{\prime} & =2^{-12} \Delta=2^{-4}(-a+b)(a+b) b^{2} a^{8}
\end{aligned}
$$

- Notice that $v_{2}\left((-a+b)(a+b) b^{2} a^{8}\right)=v_{2}\left(b^{2}-a^{2}\right)+2 v_{2}(b)+8 v_{2}(a) \geq 4$. So $2^{-12} \Delta \in \mathbb{Z}$


## Proof

- Suppose $v_{2}(a) \geq 1$ or $v_{2}\left(b^{2}-a^{2}\right) \geq 4$. This yield the quantities

$$
\begin{aligned}
c_{4}^{\prime} & =2^{-4} c_{4}=\left(a^{4}-16 a^{2} b^{2}+16 b^{4}\right) \\
c_{6}^{\prime} & =2^{-6} c_{6}=\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right) \\
\Delta^{\prime} & =2^{-12} \Delta=2^{-4}(-a+b)(a+b) b^{2} a^{8}
\end{aligned}
$$

- Notice that $v_{2}\left((-a+b)(a+b) b^{2} a^{8}\right)=v_{2}\left(b^{2}-a^{2}\right)+2 v_{2}(b)+8 v_{2}(a) \geq 4$. So $2^{-12} \Delta \in \mathbb{Z}$
- We will now verify Kraus' theorem to check that an integral Weierstrass


## Checking Part i) of Krauss' Theorem

- We want to show that $v_{3}\left(2^{-6} c_{6}\right) \neq 2$


## Checking Part i) of Krauss' Theorem

- We want to show that $v_{3}\left(2^{-6} C_{6}\right) \neq 2$
- Consider $2^{-6} C_{6} \bmod 3$. We find that

$$
\begin{aligned}
2^{-6} c_{6} & =\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right) \\
& \equiv a^{6}+b^{6} \quad \bmod 3
\end{aligned}
$$

Since $a, b$ are relatively prime and any integer not divisible by 3 to the 6 th power is 1 , we have that $c_{6} \bmod 3 \equiv 1$ or $2 \bmod 3$. Thus $v_{3}\left(2^{-6} c_{6}\right)=0 \neq 2$.

## Checking Part ii) of Krauss' Theorem

- Suppose $v_{2}(a) \geq 1$, then we have $a=2 k$ for some $k \in \mathbb{Z}$


## Checking Part ii) of Krauss' Theorem

- Suppose $v_{2}(a) \geq 1$, then we have $a=2 k$ for some $k \in \mathbb{Z}$
- We want to show that $v_{2}\left(2^{-4} c_{4}\right) \geq 4$ and $2^{-6} c_{6} \equiv 0$ or $8 \bmod 32$.


## Checking Part ii) of Krauss' Theorem

- Suppose $v_{2}(a) \geq 1$, then we have $a=2 k$ for some $k \in \mathbb{Z}$
- We want to show that $v_{2}\left(2^{-4} c_{4}\right) \geq 4$ and $2^{-6} C_{6} \equiv 0$ or $8 \bmod 32$.
- We have that

$$
\begin{aligned}
v_{2}\left(2^{-4} c_{4}\right) & =v_{2}\left(a^{4}-16 a^{2} b^{2}+16 b^{4}\right) \\
& =v_{2}\left(2^{4} k^{4}-2^{6} k^{2} b^{2}+2^{4} b^{4}\right) \\
& =4+v_{2}\left(k^{4}-2^{2} k^{2} b^{2}+b^{4}\right) \geq 4
\end{aligned}
$$

## Checking Part ii) of Krauss' Theorem

- Suppose $v_{2}(a) \geq 1$, then we have $a=2 k$ for some $k \in \mathbb{Z}$
- We want to show that $v_{2}\left(2^{-4} c_{4}\right) \geq 4$ and $2^{-6} c_{6} \equiv 0$ or $8 \bmod 32$.
- We have that

$$
\begin{aligned}
v_{2}\left(2^{-4} c_{4}\right) & =v_{2}\left(a^{4}-16 a^{2} b^{2}+16 b^{4}\right) \\
& =v_{2}\left(2^{4} k^{4}-2^{6} k^{2} b^{2}+2^{4} b^{4}\right) \\
& =4+v_{2}\left(k^{4}-2^{2} k^{2} b^{2}+b^{4}\right) \geq 4
\end{aligned}
$$

- Now consider $2^{-6} c_{6} \bmod 32$. This is congruent to

$$
\begin{aligned}
\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right) & \equiv 2^{5}\left(2 k-b^{2}\right)\left(k^{4}+4 k^{2} b^{2}-2 b^{4}\right) \bmod 32 \\
& \equiv 0 \bmod 32
\end{aligned}
$$

## Checking Part ii) of Krauss' Theorem

- Suppose $v_{2}(a) \geq 1$, then we have $a=2 k$ for some $k \in \mathbb{Z}$
- We want to show that $v_{2}\left(2^{-4} c_{4}\right) \geq 4$ and $2^{-6} c_{6} \equiv 0$ or $8 \bmod 32$.
- We have that

$$
\begin{aligned}
v_{2}\left(2^{-4} c_{4}\right) & =v_{2}\left(a^{4}-16 a^{2} b^{2}+16 b^{4}\right) \\
& =v_{2}\left(2^{4} k^{4}-2^{6} k^{2} b^{2}+2^{4} b^{4}\right) \\
& =4+v_{2}\left(k^{4}-2^{2} k^{2} b^{2}+b^{4}\right) \geq 4
\end{aligned}
$$

- Now consider $2^{-6} \mathrm{C}_{6}$ mod 32. This is congruent to

$$
\begin{aligned}
\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right) & \equiv 2^{5}\left(2 k-b^{2}\right)\left(k^{4}+4 k^{2} b^{2}-2 b^{4}\right) \quad \bmod 32 \\
& \equiv 0 \quad \bmod 32
\end{aligned}
$$

- Now suppose $v_{2}\left(b^{2}-a^{2}\right) \geq 4$, we have that $a$ and $b$ must both be odd. This means that $2^{-6} c_{6}$ is odd and so it suffices to verify $2^{-6} c_{6} \equiv 3 \bmod 4$. Notice that

$$
\begin{aligned}
2^{-6} c_{6} & \equiv\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right) \quad \bmod 4 \\
& \equiv(1-2)(1+32-32) \equiv 3 \quad \bmod 4
\end{aligned}
$$

## Checking Part ii) of Krauss' Theorem

- Suppose $v_{2}(a) \geq 1$, then we have $a=2 k$ for some $k \in \mathbb{Z}$
- We want to show that $v_{2}\left(2^{-4} c_{4}\right) \geq 4$ and $2^{-6} c_{6} \equiv 0$ or $8 \bmod 32$.
- We have that

$$
\begin{aligned}
v_{2}\left(2^{-4} c_{4}\right) & =v_{2}\left(a^{4}-16 a^{2} b^{2}+16 b^{4}\right) \\
& =v_{2}\left(2^{4} k^{4}-2^{6} k^{2} b^{2}+2^{4} b^{4}\right) \\
& =4+v_{2}\left(k^{4}-2^{2} k^{2} b^{2}+b^{4}\right) \geq 4
\end{aligned}
$$

- Now consider $2^{-6} \mathrm{C}_{6}$ mod 32. This is congruent to

$$
\begin{aligned}
\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right) & \equiv 2^{5}\left(2 k-b^{2}\right)\left(k^{4}+4 k^{2} b^{2}-2 b^{4}\right) \quad \bmod 32 \\
& \equiv 0 \quad \bmod 32
\end{aligned}
$$

- Now suppose $v_{2}\left(b^{2}-a^{2}\right) \geq 4$, we have that $a$ and $b$ must both be odd. This means that $2^{-6} c_{6}$ is odd and so it suffices to verify $2^{-6} c_{6} \equiv 3 \bmod 4$. Notice that

$$
\begin{aligned}
2^{-6} c_{6} & \equiv\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right) \quad \bmod 4 \\
& \equiv(1-2)(1+32-32) \equiv 3 \quad \bmod 4
\end{aligned}
$$

- So Kraus' Theorem holds under the conditions $v_{2}(a) \geq 1$ or $v_{2}\left(b^{2}-a^{2}\right) \geq 4$, so there exists an integral Weierstrass Model having discriminant $2^{-12} \Delta$.


## No Other Admissible Change of Variables

- We will now prove we cannot have an integral Weierstrass model having discriminant $2^{-12} \Delta^{\prime}$ by doing another admissible change of variables.


## No Other Admissible Change of Variables

- We will now prove we cannot have an integral Weierstrass model having discriminant $2^{-12} \Delta^{\prime}$ by doing another admissible change of variables.
- We have $a=2^{2} a \hat{a}$ where $\hat{a} \in \mathbb{Z}$ (not automatic).


## No Other Admissible Change of Variables

- We will now prove we cannot have an integral Weierstrass model having discriminant $2^{-12} \Delta^{\prime}$ by doing another admissible change of variables.
- We have $a=2^{2} a ̂$ where $\hat{a} \in \mathbb{Z}$ (not automatic).
- So we have the following:

$$
\begin{aligned}
2^{-4} c_{4}^{\prime} & =2^{-4}\left(a^{4}-16 a^{2} b^{2}+16 b^{4}\right)=\left(16 \hat{a}^{4}-16 \hat{a}^{2} b^{2}+b^{4}\right) \\
2^{-6} c_{6}^{\prime} & =2^{-6}\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right)=\left(8 \hat{a}^{2}-b^{2}\right)\left(8 \hat{a}^{4}+16 \hat{a}^{2} b^{2}-b^{4}\right) \\
2^{-12} \Delta^{\prime} & =2^{-16} 3(-a+b)(a+b) b^{2} a^{8}=(-4 \hat{a}+b)(4 \hat{a}+b) b^{2} \hat{a}^{8}
\end{aligned}
$$

## No Other Admissible Change of Variables

- We will now prove we cannot have an integral Weierstrass model having discriminant $2^{-12} \Delta^{\prime}$ by doing another admissible change of variables.
- We have $a=2^{2}$ â where $\hat{a} \in \mathbb{Z}$ (not automatic).
- So we have the following:

$$
\begin{aligned}
2^{-4} c_{4}^{\prime} & =2^{-4}\left(a^{4}-16 a^{2} b^{2}+16 b^{4}\right)=\left(16 \hat{a}^{4}-16 \hat{a}^{2} b^{2}+b^{4}\right) \\
2^{-6} c_{6}^{\prime} & =2^{-6}\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right)=\left(8 \hat{a}^{2}-b^{2}\right)\left(8 \hat{a}^{4}+16 \hat{a}^{2} b^{2}-b^{4}\right) \\
2^{-12} \Delta^{\prime} & =2^{-16} 3(-a+b)(a+b) b^{2} a^{8}=(-4 \hat{a}+b)(4 \hat{a}+b) b^{2} \hat{a}^{8}
\end{aligned}
$$

- We have that $2^{-6} c_{6}^{\prime}=\left(8 \hat{a}^{2}-b^{2}\right)\left(8 \hat{a}^{4}+16 \hat{a}^{2} b^{2}-b^{4}\right)$ is odd. To check Kraus' Theorem, we must verify that $2^{-6} c_{6}^{\prime} \equiv 3 \bmod 4$.


## No Other Admissible Change of Variables

- We will now prove we cannot have an integral Weierstrass model having discriminant $2^{-12} \Delta^{\prime}$ by doing another admissible change of variables.
- We have $a=2^{2}$ â where $\hat{a} \in \mathbb{Z}$ (not automatic).
- So we have the following:

$$
\begin{aligned}
2^{-4} c_{4}^{\prime} & =2^{-4}\left(a^{4}-16 a^{2} b^{2}+16 b^{4}\right)=\left(16 \hat{a}^{4}-16 \hat{a}^{2} b^{2}+b^{4}\right) \\
2^{-6} c_{6}^{\prime} & =2^{-6}\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right)=\left(8 \hat{a}^{2}-b^{2}\right)\left(8 \hat{a}^{4}+16 \hat{a}^{2} b^{2}-b^{4}\right) \\
2^{-12} \Delta^{\prime} & =2^{-16} 3(-a+b)(a+b) b^{2} a^{8}=(-4 \hat{a}+b)(4 \hat{a}+b) b^{2} \hat{a}^{8}
\end{aligned}
$$

- We have that $2^{-6} c_{6}^{\prime}=\left(8 \hat{a}^{2}-b^{2}\right)\left(8 \hat{a}^{4}+16 \hat{a}^{2} b^{2}-b^{4}\right)$ is odd. To check Kraus' Theorem, we must verify that $2^{-6} C_{6}^{\prime} \equiv 3 \bmod 4$.
- Notice that,
$2^{-6} c_{6}^{\prime}=\left(8 \hat{a}^{2}-b^{2}\right)\left(8 \hat{a}^{4}+16 \hat{a}^{2} b^{2}-b^{4}\right) \equiv\left(-b^{2}\right)\left(-b^{4}\right) \equiv 1 \bmod 4 \not \equiv 3 \bmod 4$


## No Other Admissible Change of Variables

- We will now prove we cannot have an integral Weierstrass model having discriminant $2^{-12} \Delta^{\prime}$ by doing another admissible change of variables.
- We have $a=2^{2}$ â where $\hat{a} \in \mathbb{Z}$ (not automatic).
- So we have the following:

$$
\begin{aligned}
2^{-4} c_{4}^{\prime} & =2^{-4}\left(a^{4}-16 a^{2} b^{2}+16 b^{4}\right)=\left(16 \hat{a}^{4}-16 \hat{a}^{2} b^{2}+b^{4}\right) \\
2^{-6} c_{6}^{\prime} & =2^{-6}\left(a^{2}-2 b^{2}\right)\left(a^{4}+32 a^{2} b^{2}-32 b^{4}\right)=\left(8 \hat{a}^{2}-b^{2}\right)\left(8 \hat{a}^{4}+16 \hat{a}^{2} b^{2}-b^{4}\right) \\
2^{-12} \Delta^{\prime} & =2^{-16} 3(-a+b)(a+b) b^{2} a^{8}=(-4 \hat{a}+b)(4 \hat{a}+b) b^{2} \hat{a}^{8}
\end{aligned}
$$

- We have that $2^{-6} c_{6}^{\prime}=\left(8 \hat{a}^{2}-b^{2}\right)\left(8 \hat{a}^{4}+16 \hat{a}^{2} b^{2}-b^{4}\right)$ is odd. To check Kraus' Theorem, we must verify that $2^{-6} C_{6}^{\prime} \equiv 3 \bmod 4$.
- Notice that,
$2^{-6} c_{6}^{\prime}=\left(8 \hat{a}^{2}-b^{2}\right)\left(8 \hat{a}^{4}+16 \hat{a}^{2} b^{2}-b^{4}\right) \equiv\left(-b^{2}\right)\left(-b^{4}\right) \equiv 1 \bmod 4 \not \equiv 3 \bmod 4$
- So Kraus' Theorem does not hold. So we have that $2^{-12} \Delta$ is the minimal discriminant under these conditions.


## Concluding Steps

- We do a similar process with the conditions $a$ is odd and $v_{2}\left(b^{2}-a^{2}\right) \leq 3$ to show that $1^{-12} \Delta$ is the minimal discriminant.


## Concluding Steps

- We do a similar process with the conditions $a$ is odd and $v_{2}\left(b^{2}-a^{2}\right) \leq 3$ to show that $1^{-12} \Delta$ is the minimal discriminant.
- The minimal discriminant of $E_{2}$ is $u^{-12} \Delta$ with $u \mid 2$. Moreover,

$$
u=\left\{\begin{array}{l}
2 \leftarrow v_{2}(a) \geq 1 \text { or } v_{2}\left(b^{2}-a^{2}\right) \geq 4 \\
1 \leftarrow v_{2}(a)=0\left(\text { i.e } a \text { is odd) and } v_{2}\left(b^{2}-a^{2}\right)<4\right.
\end{array}\right.
$$

## Concluding Steps

- We do a similar process with the conditions $a$ is odd and $v_{2}\left(b^{2}-a^{2}\right) \leq 3$ to show that $1^{-12} \Delta$ is the minimal discriminant.
- The minimal discriminant of $E_{2}$ is $u^{-12} \Delta$ with $u \mid 2$. Moreover,

$$
u=\left\{\begin{array}{l}
2 \leftarrow v_{2}(a) \geq 1 \text { or } v_{2}\left(b^{2}-a^{2}\right) \geq 4 \\
1 \leftarrow v_{2}(a)=0\left(\text { i.e } a \text { is odd) and } v_{2}\left(b^{2}-a^{2}\right)<4\right.
\end{array}\right.
$$

- As we have exhausted all possibilities on $a$ and $b$, we have an if and only if,

$$
u=\left\{\begin{array}{l}
2 \Longleftrightarrow v_{2}(a) \geq 1 \text { or } v_{2}\left(b^{2}-a^{2}\right) \geq 4 \\
1 \Longleftrightarrow v_{2}(a)=0 \text { and } v_{2}\left(b^{2}-a^{2}\right)<4
\end{array}\right.
$$

## These 2 Simple Ratios May Solve One of the World's Hardest Math Problems!

## The ABC Conjecture

## Definition (ABC Triple)

Denoted $P=(a, b, c)$, is a triple of integers $a, b, c$ such that $a, b, c$ are relatively prime non-zero integers and $a+b=c$.

## The ABC Conjecture

## Definition (ABC Triple)

Denoted $P=(a, b, c)$, is a triple of integers $a, b, c$ such that $a, b, c$ are relatively prime non-zero integers and $a+b=c$.

## Definition (Quality)

The quality of an $A B C$ triple $P=(a, b, c)$ is the quantity

$$
q(P)=\frac{\log \max \{|a|,|b|,|c|\}}{\log \operatorname{rad}(a b c)}
$$

## The ABC Conjecture

## Definition (ABC Triple)

Denoted $P=(a, b, c)$, is a triple of integers $a, b, c$ such that $a, b, c$ are relatively prime non-zero integers and $a+b=c$.

## Definition (Quality)

The quality of an $A B C$ triple $P=(a, b, c)$ is the quantity

$$
q(P)=\frac{\log \max \{|a|,|b|,|c|\}}{\log \operatorname{rad}(a b c)}
$$

## The ABC Conjecture

## Definition (ABC Triple)

Denoted $P=(a, b, c)$, is a triple of integers $a, b, c$ such that $a, b, c$ are relatively prime non-zero integers and $a+b=c$.

## Definition (Quality)

The quality of an $A B C$ triple $P=(a, b, c)$ is the quantity

$$
q(P)=\frac{\log \max \{|a|,|b|,|c|\}}{\log \operatorname{rad}(a b c)}
$$

Remark We say an $A B C$ triple is good if $q(P)>1$ and if $a, b, c$ are positive

## The ABC Conjecture

## Definition (ABC Triple)

Denoted $P=(a, b, c)$, is a triple of integers $a, b, c$ such that $a, b, c$ are relatively prime non-zero integers and $a+b=c$.

## Definition (Quality)

The quality of an $A B C$ triple $P=(a, b, c)$ is the quantity

$$
q(P)=\frac{\log \max \{|a|,|b|,|c|\}}{\log \operatorname{rad}(a b c)}
$$

Remark We say an $A B C$ triple is good if $q(P)>1$ and if $a, b, c$ are positive

## The ABC Conjecture

## Definition (ABC Triple)

Denoted $P=(a, b, c)$, is a triple of integers $a, b, c$ such that $a, b, c$ are relatively prime non-zero integers and $a+b=c$.

## Definition (Quality)

The quality of an $A B C$ triple $P=(a, b, c)$ is the quantity

$$
q(P)=\frac{\log \max \{|a|,|b|,|c|\}}{\log \operatorname{rad}(a b c)}
$$

Remark We say an $A B C$ triple is good if $q(P)>1$ and if $a, b, c$ are positive

## Conjecture (ABC Conjecture)

For every $\epsilon>0$ there are finitely many $A B C$ triples $P=(a, b, c)$ satisfying $q(P)>1+\epsilon$

## Szpiro Ratio

## Conjecture (Szpiro Conjecture)

For every $\epsilon>0$ there exists a positive constant $\kappa_{\epsilon}$ such that for all rational elliptic curves $E$,

$$
\left|\Delta_{E}^{\min }\right| \leq \kappa_{\epsilon} N_{E}^{6+\epsilon}
$$

## Definition (Szpiro Ratio)

Let $E$ be a rational elliptic curve with minimal discriminant $\Delta_{E}^{\min }$ and associated invariants $c_{4}$ and $c_{6}$.

$$
\sigma(E)=\frac{\log \left|\Delta_{E}^{\min }\right|}{\log N_{E}}
$$

## Modified Szpiro Ratio

## Conjecture (Modified Szpiro Conjecture)

For every $\epsilon>0$ there are finitely many rational elliptic curves E satisfying

$$
\sigma_{m}(E)>6+\epsilon
$$

## Modified Szpiro Ratio

## Conjecture (Modified Szpiro Conjecture)

For every $\epsilon>0$ there are finitely many rational elliptic curves E satisfying

$$
\sigma_{m}(E)>6+\epsilon
$$

## Definition (Modified Szpiro Ratio)

Let $E$ be a rational elliptic curve with minimal discriminant $\Delta_{E}^{\min }$ and associated invariants $c_{4}$ and $c_{6}$.

$$
\sigma_{m}(E)=\frac{\log \max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}}{\log N_{E}}
$$

## Modified Szpiro Ratio

## Conjecture (Modified Szpiro Conjecture)

For every $\epsilon>0$ there are finitely many rational elliptic curves E satisfying

$$
\sigma_{m}(E)>6+\epsilon
$$

## Definition (Modified Szpiro Ratio)

Let $E$ be a rational elliptic curve with minimal discriminant $\Delta_{E}^{\min }$ and associated invariants $c_{4}$ and $c_{6}$.

$$
\sigma_{m}(E)=\frac{\log \max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}}{\log N_{E}}
$$

## Modified Szpiro Ratio

## Conjecture (Modified Szpiro Conjecture)

For every $\epsilon>0$ there are finitely many rational elliptic curves E satisfying

$$
\sigma_{m}(E)>6+\epsilon
$$

## Definition (Modified Szpiro Ratio)

Let $E$ be a rational elliptic curve with minimal discriminant $\Delta_{E}^{\min }$ and associated invariants $c_{4}$ and $c_{6}$.

$$
\sigma_{m}(E)=\frac{\log \max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}}{\log N_{E}}
$$

Remark We say that $E$ is good if $\sigma_{m}(E)>6$

## Modified Szpiro Ratio

## Conjecture (Modified Szpiro Conjecture)

For every $\epsilon>0$ there are finitely many rational elliptic curves E satisfying

$$
\sigma_{m}(E)>6+\epsilon
$$

## Definition (Modified Szpiro Ratio)

Let $E$ be a rational elliptic curve with minimal discriminant $\Delta_{E}^{\min }$ and associated invariants $c_{4}$ and $c_{6}$.

$$
\sigma_{m}(E)=\frac{\log \max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}}{\log N_{E}}
$$

Remark We say that $E$ is good if $\sigma_{m}(E)>6$

## Modified Szpiro Ratio

## Conjecture (Modified Szpiro Conjecture)

For every $\epsilon>0$ there are finitely many rational elliptic curves E satisfying

$$
\sigma_{m}(E)>6+\epsilon
$$

## Definition (Modified Szpiro Ratio)

Let $E$ be a rational elliptic curve with minimal discriminant $\Delta_{E}^{\min }$ and associated invariants $c_{4}$ and $c_{6}$.

$$
\sigma_{m}(E)=\frac{\log \max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}}{\log N_{E}}
$$

Remark We say that $E$ is good if $\sigma_{m}(E)>6$
Remark The Modified Szpiro Conjecture is equivalent to the $A B C$ Conjecture

Definition (Naive Height)

The naive height of $E$ is:

$$
h_{\text {naive }}(E)=\frac{1}{12} \log \max \left|c_{4}^{3}\right|, c_{6}^{2}
$$

## Creating a Database of Elliptic Curves

- Like mentioned before, we define the equivalence classes as

$$
\left[\left(E_{1}(t), E_{2}(t), \pi(t)\right] \in X_{0}(N)(\mathbb{Q})\right.
$$

- We define $S$ as

$$
S=\left\{\left.\frac{b}{a} \right\rvert\, \operatorname{gcd}(a, b)=1,1 \leq a, b \leq 650\right\}
$$

Remark Important to note that $t \in S$

## Szpiro Ratio Table

Table 1: Szpiro Conjecture Database

| Isogeny Class | No. of Unique Curves | Good Elliptic Curves | Largest MSR | Smallest MSR | Lower Bound? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $X_{0}(6)$ | $3,112,892$ | 425 | 7.66 | 2.84 |  |
| $X_{0}(7)$ | $3,112,926$ | 2 | 618 | 2.025 | $2 ?$ |
| $X_{0}(8)$ | $2,334,693$ | 2268 | 12.794 | 2.795 |  |
| $X_{0}(9)$ | $3,112,925$ | 886 | 13.395 | 3.01 | $3 ?$ |
| $X_{0}(10)$ | $3,112,924$ | 23 | 7.31 | 2.76 |  |
| $X_{0}(12)$ | $2,810,469$ | 15,664 | 10.98 | 4.03 | $4 ?$ |
| $X_{0}(13)$ | $3,112,926$ | 0 | 5.9 | 2.21 |  |
| $X_{0}(16)$ | $2,334,693$ | 6759 | 12.79 | 3.37 |  |

## Looking at Szpiro Ratios

## Naive Height



Figure: $X_{0}$ (8)


Figure: $X_{0}(12)$

## Szpiro Ratio



Figure: $X_{0}$ (8)


Figure: $X_{0}(12)$

## Modified Szpiro Ratio



Figure: $X_{0}$ (8) assets/Histograms/12MSR.png

Figure: $X_{0}(12)$

## Thanks



This research was conducted at Pomona College in Claremont, California, and this project was supported by the National Science Foundation (DMS-1659203), Pomona College, and viewers like you. Thank you.
C
Carleton
UCSB

Eckerd College

## References I

[1] A. Barrios.
Modular curves and the modified szpiro conjecture.
[2] S. Lang.
Old and new conjectured diophantine inequalities.
Bulletin of The American Mathematical Society, (1):37-75, July 1990.
[3] T. Weston.
The modular curves $x_{0}(11)$ and $x_{1}(11)$.

