Modular Curves and Minimal Discriminants

or, Modulus Curveous and the Minimus Discriminus

Alvaro Cornejo¹ Owen Ekblad² Marietta Geist³ Kayla Harrison⁴ Abby Loe³

July 29, 2019

1 Introduction

- 2 Five Students Performed Math Research One Summer, Not Even COLLEGE Professors Expected What Happened Next!
- **We Found the Minimal Discriminant of** $X_0(8)$ **Using THESE Crazy Techniques!** You Won't Believe How We Got $\Delta_{E_2}^{\min}$!
- 4 These 2 Simple Ratios May Solve One of the World's Hardest Math Problems!
- 5 Looking at Szpiro Ratios

Introduction

Definition (Weierstrass Equation)

A Weierstrass model is an implicit function E of the form

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

where each a_i is a rational number.

Definition (Weierstrass Equation)

A Weierstrass model is an implicit function E of the form

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

where each a_i is a rational number.

• When *E* is differentiable at every point on the curve, we say that *E* is **non-singular**.

Definition (Weierstrass Equation)

A Weierstrass model is an implicit function E of the form

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

where each a_i is a rational number.

- When *E* is differentiable at every point on the curve, we say that *E* is **non-singular**.
- Conversely, when *E* is *not* differentiable everywhere, we say that *E* is **singular**.

assets/nonsingularexamples.PNG

Figure: A non-singular Weierstrass model

Figure: Two singular curves, $y^2 = x^3 - 3x^2 + 3x - 1$ and $y^2 = x^3 + x^2$.

Suppose that *E* is a non-singular Weierstrass equation. Intuitively, a **rational elliptic curve** is the graph of *E* together with a point O not on the curve that is said to be the "point at infinity."

Suppose that *E* is a non-singular Weierstrass equation. Intuitively, a **rational elliptic curve** is the graph of *E* together with a point O not on the curve that is said to be the "point at infinity."

• We can define an elliptic curve over any arbitrary field *K*, but this summer we focused on elliptic curves defined over the rational numbers.

Suppose that *E* is a non-singular Weierstrass equation. Intuitively, a **rational elliptic curve** is the graph of *E* together with a point O not on the curve that is said to be the "point at infinity."

- We can define an elliptic curve over any arbitrary field *K*, but this summer we focused on elliptic curves defined over the rational numbers.
- We can also think about the rational points on elliptic curves!

Suppose that *E* is a non-singular Weierstrass equation. Intuitively, a **rational elliptic curve** is the graph of *E* together with a point O not on the curve that is said to be the "point at infinity."

- We can define an elliptic curve over any arbitrary field *K*, but this summer we focused on elliptic curves defined over the rational numbers.
- We can also think about the rational points on elliptic curves!

Suppose that *E* is a non-singular Weierstrass equation. Intuitively, a **rational elliptic curve** is the graph of *E* together with a point O not on the curve that is said to be the "point at infinity."

- We can define an elliptic curve over any arbitrary field *K*, but this summer we focused on elliptic curves defined over the rational numbers.
- We can also think about the rational points on elliptic curves!

Definition (Q-rational Points)

The Q-rational points are

$$E(\mathbb{Q}) = \left\{ (x,y) \in \mathbb{Q}^2 \ | \ y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \right\}$$

Q-rational points

We can define a group

We can define a group

Definition

Let *E* be an elliptic curve, and let *P* and *Q* be rational points on *E*. We define a group (E, \bigoplus) by drawing a secant line through *P*, *Q*. *R* is where the secant line intersects *E*. *P* \bigoplus *Q* is the intersection of *E* and the secant line through *R*, \mathcal{O}_E .

The Group Law

Figure: Group Law on Elliptic Curves

The identity is \mathcal{O}_E .

$P \bigoplus P$ is found not with a secant line, but with a tangent line.

Let G be a group. The subgroup of G containing all elements of finite order in G is called the **torsion subgroup** of G and is denoted by G_{tors} .

Elliptic curves with nontrivial torsion subgroups are worthy of study

Let G be a group. The subgroup of G containing all elements of finite order in G is called the **torsion subgroup** of G and is denoted by G_{tors} .

Elliptic curves with nontrivial torsion subgroups are worthy of study

Let G be a group. The subgroup of G containing all elements of finite order in G is called the **torsion subgroup** of G and is denoted by G_{tors} .

Elliptic curves with nontrivial torsion subgroups are worthy of study

Theorem (Mazur's Torsion Theorem)

Let E be a rational elliptic curve and let C_N denote the cyclic group of N elements. Then

$$E(\mathbb{Q})_{tors} \cong \begin{cases} C_N & \text{for } N = 1, 2, \dots, 10, 12 \\ C_2 \times C_{2N} & \text{for } N = 1, 2, 3, 4. \end{cases}$$

Let G be a group. The subgroup of G containing all elements of finite order in G is called the **torsion subgroup** of G and is denoted by G_{tors} .

Elliptic curves with nontrivial torsion subgroups are worthy of study

Theorem (Mazur's Torsion Theorem)

Let E be a rational elliptic curve and let C_N denote the cyclic group of N elements. Then

$$E(\mathbb{Q})_{tors} \cong \begin{cases} C_N & \text{for } N = 1, 2, \dots, 10, 12\\ C_2 \times C_{2N} & \text{for } N = 1, 2, 3, 4. \end{cases}$$

Let G be a group. The subgroup of G containing all elements of finite order in G is called the **torsion subgroup** of G and is denoted by G_{tors} .

Elliptic curves with nontrivial torsion subgroups are worthy of study

Theorem (Mazur's Torsion Theorem)

Let E be a rational elliptic curve and let C_N denote the cyclic group of N elements. Then

$$E(\mathbb{Q})_{tors} \cong \begin{cases} C_N & \text{for } N = 1, 2, \dots, 10, 12\\ C_2 \times C_{2N} & \text{for } N = 1, 2, 3, 4. \end{cases}$$

Remark If we define an elliptic curve over two different fields, it is possible that the cyclic subgroups are different.

Definition (c_4, c_6, Δ)

We define c_4, c_6, Δ as the following:

$$\begin{aligned} c_4 &= a_1^4 + 8a_1^2a_2 - 24a_3a_1 + 16a_2^2 - 48a_4\\ c_6 &= -\left(a_1^2 + 4a_2\right)^3 + 36\left(a_1^2 + 4a_2\right)(2a_4 + a_1a_3) - 216\left(a_3^2 + 4a_6\right)\\ \Delta &= \frac{c_4^3 - c_6^2}{1728}, \text{ (we call } \Delta \text{ the discriminant of } E) \end{aligned}$$

Definition (c_4, c_6, Δ)

We define c_4, c_6, Δ as the following:

$$\begin{split} c_4 &= a_1^4 + 8a_1^2a_2 - 24a_3a_1 + 16a_2^2 - 48a_4\\ c_6 &= -\left(a_1^2 + 4a_2\right)^3 + 36\left(a_1^2 + 4a_2\right)(2a_4 + a_1a_3) - 216\left(a_3^2 + 4a_6\right)\\ \Delta &= \frac{c_4^3 - c_6^2}{1728}, \text{ (we call } \Delta \text{ the discriminant of } E) \end{split}$$

Definition (Isomorphism)

We say that $\phi : \mathbf{G} \to \mathbf{H}$ is an isomorphism if ϕ preserves group structure.

Definition (c_4, c_6, Δ)

We define c_4, c_6, Δ as the following:

$$\begin{split} c_4 &= a_1^4 + 8a_1^2a_2 - 24a_3a_1 + 16a_2^2 - 48a_4\\ c_6 &= -\left(a_1^2 + 4a_2\right)^3 + 36\left(a_1^2 + 4a_2\right)(2a_4 + a_1a_3) - 216\left(a_3^2 + 4a_6\right)\\ \Delta &= \frac{c_4^3 - c_6^2}{1728}, \text{ (we call } \Delta \text{ the discriminant of } E) \end{split}$$

Definition (Isomorphism)

We say that $\phi : \mathbf{G} \to \mathbf{H}$ is an isomorphism if ϕ preserves group structure.

Definition (c_4, c_6, Δ)

We define c_4, c_6, Δ as the following:

$$\begin{split} c_4 &= a_1^4 + 8a_1^2a_2 - 24a_3a_1 + 16a_2^2 - 48a_4\\ c_6 &= -\left(a_1^2 + 4a_2\right)^3 + 36\left(a_1^2 + 4a_2\right)(2a_4 + a_1a_3) - 216\left(a_3^2 + 4a_6\right)\\ \Delta &= \frac{c_4^3 - c_6^2}{1728}, \text{ (we call } \Delta \text{ the discriminant of } E) \end{split}$$

Definition (Isomorphism)

We say that $\phi : \mathbf{G} \to \mathbf{H}$ is an isomorphism if ϕ preserves group structure.

Definition

We define the *j*-invariant of an elliptic curve *E* to be

$$j = \frac{c_4^3}{\Delta}$$

Definition (c_4, c_6, Δ)

We define c_4, c_6, Δ as the following:

$$\begin{split} c_4 &= a_1^4 + 8a_1^2a_2 - 24a_3a_1 + 16a_2^2 - 48a_4\\ c_6 &= -\left(a_1^2 + 4a_2\right)^3 + 36\left(a_1^2 + 4a_2\right)(2a_4 + a_1a_3) - 216\left(a_3^2 + 4a_6\right)\\ \Delta &= \frac{c_4^3 - c_6^2}{1728}, \text{ (we call } \Delta \text{ the discriminant of } E) \end{split}$$

Definition (Isomorphism)

We say that $\phi : \mathbf{G} \to \mathbf{H}$ is an isomorphism if ϕ preserves group structure.

Definition

We define the *j*-invariant of an elliptic curve *E* to be

$$j = \frac{c_4^3}{\Delta}$$

Definition (c_4, c_6, Δ)

We define c_4, c_6, Δ as the following:

$$\begin{split} c_4 &= a_1^4 + 8a_1^2a_2 - 24a_3a_1 + 16a_2^2 - 48a_4\\ c_6 &= -\left(a_1^2 + 4a_2\right)^3 + 36\left(a_1^2 + 4a_2\right)(2a_4 + a_1a_3) - 216\left(a_3^2 + 4a_6\right)\\ \Delta &= \frac{c_4^3 - c_6^2}{1728}, \text{ (we call } \Delta \text{ the discriminant of } E) \end{split}$$

Definition (Isomorphism)

We say that $\phi : \mathbf{G} \to \mathbf{H}$ is an isomorphism if ϕ preserves group structure.

Definition

We define the *j*-invariant of an elliptic curve *E* to be

$$j = \frac{c_4^3}{\Delta}$$

 When the *j*-invariants of two elliptic curves are the same we can say they are isomorphic over C. However, this does not mean they are isomorphic over Q. When the *j*-invariants of two elliptic curves are the same we can say they are isomorphic over ℂ. However, this does not mean they are isomorphic over ℚ.

 $y^2 = x^3 + 1$ and $y^2 = x^3 - 1$ have the same *j*-invariant of zero, but they are not \mathbb{Q} -isomorphic.

 When the *j*-invariants of two elliptic curves are the same we can say they are isomorphic over C. However, this does not mean they are isomorphic over Q.

 $y^2 = x^3 + 1$ and $y^2 = x^3 - 1$ have the same *j*-invariant of zero, but they are not \mathbb{Q} -isomorphic.

• Instead, we find that if we map $(x, y) \mapsto (i^2 x, i^3 y)$, and E_1, E_2 are isomorphic over $\mathbb{Q}(i)$

Let K be a field, and E and E' be elliptic curves defined by a Weierstrass model. If $\phi : E \to E'$ is a K-isomorphism such that $\phi(\mathcal{O}_E) = \phi(\mathcal{O}_{E'})$, then $\phi(x, y) = (u^2x + r, u^3y + u^2sx + w)$ where $u, s, r, w \in K$.

Let K be a field, and E and E' be elliptic curves defined by a Weierstrass model. If $\phi : E \to E'$ is a K-isomorphism such that $\phi(\mathcal{O}_E) = \phi(\mathcal{O}_{E'})$, then $\phi(x, y) = (u^2x + r, u^3y + u^2sx + w)$ where $u, s, r, w \in K$.

Remark Notice that *r* and *w* translate the elliptic curve, *s* scales the *y* value, and *u* scales both the *x* and *y* values.

Let K be a field, and E and E' be elliptic curves defined by a Weierstrass model. If $\phi : E \to E'$ is a K-isomorphism such that $\phi(\mathcal{O}_E) = \phi(\mathcal{O}_{E'})$, then $\phi(x, y) = (u^2x + r, u^3y + u^2sx + w)$ where $u, s, r, w \in K$.

Remark Notice that *r* and *w* translate the elliptic curve, *s* scales the *y* value, and *u* scales both the *x* and *y* values.

Let K be a field, and E and E' be elliptic curves defined by a Weierstrass model. If $\phi : E \to E'$ is a K-isomorphism such that $\phi(\mathcal{O}_E) = \phi(\mathcal{O}_{E'})$, then $\phi(x, y) = (u^2x + r, u^3y + u^2sx + w)$ where $u, s, r, w \in K$.

Remark Notice that *r* and *w* translate the elliptic curve, *s* scales the *y* value, and *u* scales both the *x* and *y* values.

Remark If Δ , c_4 , c_6 are associated to *E* and Δ' , c'_4 , c'_6 are associated to *E'*, then we have the relations:

$$\Delta' = u^{-12}\Delta$$
, $c'_6 = u^{-6}c_6$, $c'_4 = u^{-4}c_4$

Example

Let E_1 and E_2 be elliptic curves defined over the rational numbers

$$E_1 : y^2 + xy + y = x^3 + x^2 + x + 1$$

$$E_2 : y^2 + \frac{27}{5}xy + \frac{51}{125}y = x^3 - \frac{157}{25}x^2 - \frac{19}{25}x - \frac{9}{3125}$$

There is an isomorphism $\phi : E_1 \leftrightarrow E_2$ by $(x, y) \mapsto (u^2x + r, u^3y + u^2sx + w)$ where u = 5, s = 8, r = 13, t = 21.

Example

Let E₁ and E₂ be elliptic curves defined over the rational numbers

$$E_1: y^2 + xy + y = x^3 + x^2 + x + 1$$

$$E_2: y^2 + \frac{27}{5}xy + \frac{51}{125}y = x^3 - \frac{157}{25}x^2 - \frac{19}{25}x - \frac{9}{3125}$$

There is an isomorphism $\phi : E_1 \leftrightarrow E_2$ by $(x, y) \mapsto (u^2x + r, u^3y + u^2sx + w)$ where u = 5, s = 8, r = 13, t = 21.

• Recall that the j-invariant fails for Q-isomorphisms.

Example

Let E_1 and E_2 be elliptic curves defined over the rational numbers

$$E_1: y^2 + xy + y = x^3 + x^2 + x + 1$$

$$E_2: y^2 + \frac{27}{5}xy + \frac{51}{125}y = x^3 - \frac{157}{25}x^2 - \frac{19}{25}x - \frac{9}{3125}$$

There is an isomorphism $\phi : E_1 \leftrightarrow E_2$ by $(x, y) \mapsto (u^2x + r, u^3y + u^2sx + w)$ where u = 5, s = 8, r = 13, t = 21.

• Recall that the j-invariant fails for $\mathbb Q\text{-}\text{isomorphisms}.$

The admissible change of variables provides us with a useful way to translate over $\mathbb{Q}\text{-}\textsc{isomorphic curves}.$

Let E be a rational elliptic curve given by

$$E: y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

We say Emin is a global minimal model of E if

- $a_1, a_2, a_3, a_4, a_6, c_4, c_6$, and Δ are integers
- $|\Delta|$ is minimal over all \mathbb{Q} -isomorphic elliptic curves of *E*.

Remark We call Δ the **minimal discriminant** of E_{min} and denote it by Δ_{min} . Moreover, the quantities c_4 and c_6 of a global model are called the associated quantities to a minimal model. Let *E* be a rational elliptic curve and let *p* be a prime.

Definition (Additive Reduction)

If p divides $gcd(c_4, \Delta)$ then we say that E has **additive reduction** at p

Definition (Semistable)

If p does not divide $gcd(c_4, \Delta)$ then we say that E is **semistable** at a point p. We call E semistable if E is semistable at all primes.

Definition (The Conductor)

We define the **conductor** of a rational elliptic curve *E* to be

$$N_E = \prod_{p \mid \Delta_E^{min}} p^{f_p}$$

Where $f_p = \begin{cases} 1 \text{ if } E \text{ is semistable at } p \\ 2 + \delta_p \text{ if } E \text{ has additive reduction at } p \\ and \delta \text{ is a function that depends on the primes.} \end{cases}$

For $p \geq 5$, $\delta_p = 0$. For p = 2, $\delta_p \leq 6$ and for p = 3, $\delta_p \leq 3$.

Definition (The Conductor)

We define the **conductor** of a rational elliptic curve *E* to be

$$N_E = \prod_{p \mid \Delta_E^{min}} p^{f_p}$$

Where $f_p = \begin{cases} 1 \text{ if } E \text{ is semistable at } p \\ 2 + \delta_p \text{ if } E \text{ has additive reduction at } p \\ and \delta \text{ is a function that depends on the primes.} \end{cases}$

For $p \ge 5$, $\delta_p = 0$. For p = 2, $\delta_p \le 6$ and for p = 3, $\delta_p \le 3$.

Definition (The Conductor)

We define the **conductor** of a rational elliptic curve *E* to be

$$N_E = \prod_{p \mid \Delta_E^{min}} p^{f_p}$$

Where $f_p = \begin{cases} 1 \text{ if } E \text{ is semistable at } p \\ 2 + \delta_p \text{ if } E \text{ has additive reduction at } p \\ and \delta \text{ is a function that depends on the primes.} \end{cases}$

For $p \ge 5$, $\delta_p = 0$. For p = 2, $\delta_p \le 6$ and for p = 3, $\delta_p \le 3$. **Remark** If *E* is semistable, then $N_E = \operatorname{rad}(\Delta_E^{min})$.

A \mathbb{Q} -isogeny between two elliptic curves E_1 and E_2 is a morphism $\varphi : E_1 \to E_2$ where φ is defined over \mathbb{Q} . E_1 and E_2 are said to be isogenous

A \mathbb{Q} -isogeny between two elliptic curves E_1 and E_2 is a morphism $\varphi : E_1 \to E_2$ where φ is defined over \mathbb{Q} . E_1 and E_2 are said to be isogenous

Definition

If two elliptic curves, E_1 and E_2 , are **isogenous** then $N_{E_1} = N_{E_2}$

A \mathbb{Q} -isogeny between two elliptic curves E_1 and E_2 is a morphism $\varphi : E_1 \to E_2$ where φ is defined over \mathbb{Q} . E_1 and E_2 are said to be isogenous

Definition

If two elliptic curves, E_1 and E_2 , are **isogenous** then $N_{E_1} = N_{E_2}$

A \mathbb{Q} -isogeny between two elliptic curves E_1 and E_2 is a morphism $\varphi : E_1 \to E_2$ where φ is defined over \mathbb{Q} . E_1 and E_2 are said to be isogenous

Definition

If two elliptic curves, E_1 and E_2 , are **isogenous** then $N_{E_1} = N_{E_2}$

Proposition

We say two curves are in the same isogeny class if they are isogenous.

Definition (Reduced minimal model)

Let *E* be a rational elliptic curve. The reduced minimal model of *E* is given by a Weierstrass model

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

which is a global minimal model of *E* such that $a_1, a_3 \in \{0, 1\}$ and $a_2 \in \{-1, 0, 1\}$

Note: The reduced minimal model of a rational elliptic curve is unique!

Definition (*p*-adic valuation)

Let *p* be a prime. The *p*-adic valuation

$$V_p: \mathbb{Z} \to \mathbb{Z}_{\geq 0} \cup \{\infty\}$$

is defined as

$$v_{p}(n) = \begin{cases} \max\{v \in \mathbb{Z}_{\geq 0} : p^{v} \mid n\} & \text{if } n \neq 0 \\ \infty & \text{if } n = 0. \end{cases}$$

The *p*-adic valuation of an integer *n* can be thought of intuitively as the highest power of *p* occurring within the prime power decomposition of *n*.

Example ($v_p(24)$ for p = 2, 3, and 5)

Example $v_p(24)$ for p = 2, 3, and 5)

There are no powers of 5 contained in 24, therefore we have that $v_5(24) = 0$.

Example ($v_p(24)$ for p = 2, 3, and 5)

There are no powers of 5 contained in 24, therefore we have that $v_5(24) = 0$.

Example ($v_p(24)$ for p = 2, 3, and 5)

$$v_2(24) = v_2(2^3 \cdot 3^1)$$
 $v_3(24) = v_3(2^3 \cdot 3^1)$ $v_5(24) = v_5(2^3 \cdot 3^1)$
= 3 = 1 = ?

There are no powers of 5 contained in 24, therefore we have that $v_5(24) = 0$.

Remark We have the identity $v_p(ab) = v_p(a) + v_p(b)$, where *a*, *b* are integers (or, integral-valued functions).

Theorem (Kraus)

Let α , β , and γ be integers such that $\alpha^3 - \beta^2 = 1728\gamma$, with $\gamma \neq 0$. Then there exists a rational elliptic curve E given by an integral Weierstrass equation having invariants $c_4 = \alpha$ and $c_6 = \beta$ if and only if the following hold:

```
(i) v_3(\beta) \neq 2
(ii) either \beta \equiv -1 \mod 4 or both v_2(\alpha) \ge 4 and \beta \equiv 0 or 8 mod 32
```

We say two elliptic curves *E* and *E'* are twists of each other if j(E) = j(E')

We use the quadratic twist in order to truly classify the minimal discriminants of rational elliptic curves, as they give the full picture of the equivalence classes in $X_0(N)$

Visualizing the Twist

Definition (The Modular Curve $X_0(N)$)

The Modular Curve $X_0(N)$ for $N \ge 2$ parameterizes isomorphism classes of triples (E, E', π) where $\pi : E \to E'$ is an isogeny with ker $(\pi) \cong C_N$.

Definition

By an isomorphism class of triples we mean that $(E_1, E'_1, \pi_1) \sim (E_2, E'_2, \pi_2)$ if and only if there are isomorphisms $\varphi : E_1 \rightarrow E_2, \varphi' : E'_1 \rightarrow E'_2$ such that $\pi_2 \circ \varphi = \varphi' \circ \pi_1$

Remark This definition is not the one found in the literature, these have been translated into the ones above

• We have that the modular curve $X_0(N)$ is genus 0 if and only if $N = 1, 2, \dots, 10, 12, 13, 16, 18, 25$.

Theorem

Let $X_0(N)$ be a genus 0 modular curve. Then there is a birational map $\varphi : \mathbb{P}^1(\mathbb{Q}) \to X_0(N)$ defined by $\varphi(t : 1) = (E_1(t), E_2(t), \pi_t)$ with the property that if $t \in \mathbb{Q}$ then $E_1(t)$ and $E_2(t)$ are elliptic curves over \mathbb{Q} with $\pi_t : E_1(t) \to E_2(t)$ as a \mathbb{Q} -isogeny with ker $\pi_t \cong C_N$

- Recall that intuitively we have $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{\mathcal{O}\}$

Five Students Performed Math Research One Summer, Not Even COLLEGE Professors Expected What Happened Next!

Theorem

Let a and b be relatively prime integers $E_{N,j}$ be as defined above and suppose that

$f_5 = 125a^2 + 22ab + b^2$	is fourth-power free	if $N = 5$
$f_7 = 49a^2 + 13ab + b^2$	is sixth-power free	if $N = 7$
$f_{13} = (13a^2 + 5ab + b^2) (13a^2 + 6ab + b^2)$	is sixth-power free	<i>if N</i> = 13

The minimal discriminant of $E_{N,j}$ is $u_{N,j}^{-12} \Delta_{N,j}$ where $u_{N,j}$ is one of the possibilities given below

(N,1)	(5,1)	(6,1)	(7,1)	(8,1)	(9,1)	(13, 1)
u _{N,1} divides	50	6	98	8	9	26

(N, 2)	(5,2)	(6,2)	(7,2)	(8,2)	(9,2)	(13, 2)
u _{N,2} divides	10	4	14	2	3	26

Theorem

Moreover, there are necessary and sufficient conditions on *a*, *b* to determine exactly the value of $u_{N,i}$ as summarized in the following tables

(N,j)			Conditions on $u_{N,j}$
(5, 1)	$u_{N,j} = 50$	\Leftrightarrow	$v_5(b) \ge 3$ with a odd
	$u_{N,j} = 25$	\Leftrightarrow	$v_5(b) \ge 3$ with a even
	$u_{N,j} = 5$	\Leftrightarrow	$v_5(b) = 2$
	$u_{N,j} = 2$	\Leftrightarrow	$v_5(b) = 1$ with a odd
	$u_{N,j} = 1$	\Leftrightarrow	$v_5(b) = 1$ with a even or $v_5(b) = 0$
(5, 2)	$u_{N,j} = 10$	\Leftrightarrow	$v_5(b) \ge 3$ with a odd
	$u_{N,j} = 5$	\Leftrightarrow	$v_5(b) \ge 3$ with a even
			$v_5(b) \leq 2$ with a odd
	$u_{N,j} = 1$	\Leftrightarrow	$v_5(b) \le 2$ with a even
(6, 1)	$u_{N,j} = 6$	\Leftrightarrow	b is even and $v_3(b) = 1$ with $\frac{ab}{3} \equiv 2 \mod 3$
	$u_{N,j} = 3$	\Leftrightarrow	b is odd and $v_3(b) = 1$ with $\frac{ab}{3} \equiv 2 \mod 3$
	$u_{N,j} = 2$	\iff	b is even and either $v_3(b) \neq 1$ or $v_3(b) = 1$ with $\frac{ab}{3} \equiv 1 \mod 3$
	$u_{N,j} = 1$	\Leftrightarrow	b is odd and either $v_3(b) \neq 1$ or $v_3(b) = 1$ with $\frac{ab}{3} \equiv 1 \mod 3$
(6, 2)	$u_{N,j} = 4$	\Leftrightarrow	$v_2(b) = 1$
	$u_{N,j} = 2$	\Leftrightarrow	$v_2(b) \ge 2$
			$v_2(b) = 0$
(7, 1)			$v_7(b) = 2, v_7(f_7) = 5, \text{ and } ab \equiv 1, 2 \mod 4$
	$u_{N,j} = 49$	\Leftrightarrow	$v_7(b) = 2, v_7(f_7) = 5, \text{ and } ab \equiv 0, 3 \mod 4$
			$v_7(b) \ge 3$ and $ab \equiv 1, 2 \mod 4$
			$v_7(b) \ge 3 \text{ and } ab \equiv 0, 3 \mod 4$
			$4 \nmid ab$ and the above conditions do not hold.
	$u_{N,j} = 1$	\Leftrightarrow	the above conditions do not hold.

	18		
(7, 2)	$u_{N,j} = 14$	\Leftrightarrow	$v_7(b) = 2, v_7(f_7) = 5, \text{ and } ab \equiv 1, 2 \mod 4$
	$u_{N,j} = 7$	\Leftrightarrow	$v_7(b) = 2, v_7(f_7) = 5, \text{ and } ab \equiv 0, 3 \mod 4$
	$u_{N,j} = 2$	\iff	$ab \equiv 1, 2 \mod 4$ and the above conditions do not hold
	$u_{N,j} = 1$	\iff	the above conditions do not hold
(8, 1)	$u_{N,j} = 6$	\Leftrightarrow	$v_2 \left(a - b \right) \ge 3$
	$u_{N,j} = 3$	\Leftrightarrow	$v_2 \left(a - b \right) = 2$
	$u_{N,j} = 2$	\Leftrightarrow	$v_2 \left(a - b \right) = 1$
	$u_{N,j} = 1$	\Leftrightarrow	$v_2 \left(a - b \right) = 0$
(8, 2)	$u_{N,j} = 2$	\Leftrightarrow	$v_2(a) \ge 1 \text{ or } v_2(a) \ge 4$
	$u_{N,j} = 1$	\iff	otherwise
(9, 1)	$u_{N,j} = 9$	\Leftrightarrow	$v_2 \left(b - a \right) \ge 2$
			$v_2 \left(b - a \right) = 1$
	$u_{N,j} = 1$	\Leftrightarrow	$v_2 \left(b - a \right) = 0$
(9, 2)	$u_{N,j} = 3$	\Leftrightarrow	$v_2(b-a) \ge 2 \text{ or } 3 a$
	$u_{N,j} = 1$	\Leftrightarrow	$v_2(b-a) \leq 1 \text{ and } 3 \nmid a$
(13, j)	$u_{N,j} = 26$	\Leftrightarrow	$v_{13}(b) \ge 1$ and either $b \equiv 2 \mod 4$ or $v_2(a) \ge 2$
	$u_{N,j} = 13$	\iff	$v_{13}(b) \ge 1$ and either $b \not\equiv 2 \mod 4$ or $v_2(a) \le 1$
	$u_{N,j} = 2$	\iff	$v_{13}(b) \equiv 0$ and either $b \equiv 2 \mod 4$ or $v_2(a) \ge 2$
	$u_{N,j} = 1$	\Leftrightarrow	$v_{13}(b) \leq 0$ and either $b \not\equiv 2 \mod 4$ or $v_2(a) \leq 1$

We Found the Minimal Discriminant of $X_0(8)$ Using THESE Crazy Techniques! You Won't Believe How We Got $\Delta_{E_2}^{\min}$!

• Define $E_1(t)$ as the following:

$$E_1: y^2 = x^3 - 27a_4^1(t)x - 54a_6^1(t)$$

Where $a_4^1 = t^4 + 60 t^3 + 134 t^2 + 60 t + 1$ and $a_6^1 = (t^4 - 132 t^3 - 250 t^2 - 132 t + 1) (t^2 + 6 t + 1)$

• Similarly define *E*₂(*t*) as:

$$E_2: y^2 = x^3 - 27a_4^2(t)x - 54a_6^2(t)$$

where $a_4^2 = 16 t^4 - 16 t^2 + 1$ and $a_6^2 = (32 t^4 - 32 t^2 - 1) (2 t^2 - 1)$

Take $(E_1, E_2, \pi) \in X_0(8)$. We have that E_2 can be parameterized by rational point $t = \frac{b}{a}$ (where *a*, *b* are coprime) as the following:

$$y^{2} = x^{3} + \left(\frac{-27a^{4} + 432a^{2}b^{2} - 432b^{4}}{a^{4}}\right)x + \frac{-54a^{6} - 1620a^{4}b^{2} + 5184a^{2}b^{4} - 3456b^{6}}{a^{6}}$$

Theorem

The minimal discriminant of E_2 is $u^{-12}\Delta$ with $u \mid 2$. Moreover,

$$u = \begin{cases} 2 \text{ if and only if } v_2(a) \ge 1 \text{ or } v_2(b^2 - a^2) \ge 4\\ 1 \Longleftrightarrow v_2(a) = 0 \text{ and } v_2(b^2 - a^2) < 4 \end{cases}$$

Before beginning this proof we will take a small detour into explaining the process of finding the GCD's

Definition (The Euclidean Algorithm)

Let *R* be an integral domain (recall an integral domain has no zero-divisors), and let $a, b \in R$ with $b \neq 0$. Then *R* is a Euclidean Domain if there exists some $q, r \in R$ such that:

a = qb + r

Before beginning this proof we will take a small detour into explaining the process of finding the GCD's

Definition (The Euclidean Algorithm)

Let *R* be an integral domain (recall an integral domain has no zero-divisors), and let $a, b \in R$ with $b \neq 0$. Then *R* is a Euclidean Domain if there exists some $q, r \in R$ such that:

a = qb + r

Remark There is prime factorization in a Euclidean Domain

Before beginning this proof we will take a small detour into explaining the process of finding the GCD's

Definition (The Euclidean Algorithm)

Let *R* be an integral domain (recall an integral domain has no zero-divisors), and let $a, b \in R$ with $b \neq 0$. Then *R* is a Euclidean Domain if there exists some $q, r \in R$ such that:

a = qb + r

Remark There is prime factorization in a Euclidean Domain

Before beginning this proof we will take a small detour into explaining the process of finding the GCD's

Definition (The Euclidean Algorithm)

Let *R* be an integral domain (recall an integral domain has no zero-divisors), and let $a, b \in R$ with $b \neq 0$. Then *R* is a Euclidean Domain if there exists some $q, r \in R$ such that:

a = qb + r

Remark There is prime factorization in a Euclidean Domain

Theorem (Bezout's Identity)

Let R be a Euclidean domain, a, b be non-zero elements of R, and $d = r_n$, the last nonzero prime factor for a and b. Then d is the greatest common divisor of a and b and there are elements x, $y \in R$ such that d = ax + by

Before beginning this proof we will take a small detour into explaining the process of finding the GCD's

Definition (The Euclidean Algorithm)

Let *R* be an integral domain (recall an integral domain has no zero-divisors), and let $a, b \in R$ with $b \neq 0$. Then *R* is a Euclidean Domain if there exists some $q, r \in R$ such that:

a = qb + r

Remark There is prime factorization in a Euclidean Domain

Theorem (Bezout's Identity)

Let R be a Euclidean domain, a, b be non-zero elements of R, and $d = r_n$, the last nonzero prime factor for a and b. Then d is the greatest common divisor of a and b and there are elements x, y \in R such that d = ax + by

Using the Euclidean Algorithm and Wolfram Mathematica, we obtained the greatest common denominators for invariants of various curves and $X_0(8)$.

Proposition

For E isomorphic to E', u^4 divides the greatest common divisor of the invariants associated with E. Since u^4 divides the gcd's between the invariants we find that $u \mid 8$

• We apply the change of variables with $(x, y) \mapsto ((\frac{3}{a})^2 x, (\frac{3}{a})^3 y)$. There is an integral Weierstrass Model *F* isomorphic to E_2 having

$$\begin{aligned} c_4 &= 2^4 (a^4 - 16a^2b^2 + 16b^4) \\ c_6 &= 2^6 (a^2 - 2b^2)(a^4 + 32a^2b^2 - 32b^4) \\ \Delta_{8,2} &= 2^8 (-a+b)(a+b)b^2a^8 \end{aligned}$$

as its invariants c_4 , c_6 , and Δ respectively.

Theorem (Kraus)

Let α , β , and γ be integers such that $\alpha^3 - \beta^2 = 1728\gamma$, with $\gamma \neq 0$. Then there exists a rational elliptic curve E given by an integral Weierstrass equation having invariants $c_4 = \alpha$ and $c_6 = \beta$ if and only if the following hold:

```
(i) v_3(\beta) \neq 2
(ii) either \beta \equiv -1 \mod 4 or both v_2(\alpha) \ge 4 and \beta \equiv 0 or 8 mod 32
```

Proof

• Suppose $v_2(a) \ge 1$ or $v_2(b^2 - a^2) \ge 4$. This yield the quantities

$$\begin{aligned} c_4' &= 2^{-4}c_4 = (a^4 - 16a^2b^2 + 16b^4) \\ c_6' &= 2^{-6}c_6 = (a^2 - 2b^2)(a^4 + 32a^2b^2 - 32b^4) \\ \Delta' &= 2^{-12}\Delta = 2^{-4}(-a+b)(a+b)b^2a^8 \end{aligned}$$

- Suppose $v_2(a) \ge 1$ or $v_2(b^2 a^2) \ge 4$. This yield the quantities $c'_4 = 2^{-4}c_4 = (a^4 - 16a^2b^2 + 16b^4)$ $c'_6 = 2^{-6}c_6 = (a^2 - 2b^2)(a^4 + 32a^2b^2 - 32b^4)$ $\Delta' = 2^{-12}\Delta = 2^{-4}(-a+b)(a+b)b^2a^8$
- Notice that $v_2((-a+b)(a+b)b^2a^8) = v_2(b^2-a^2) + 2v_2(b) + 8v_2(a) \ge 4$. So $2^{-12}\Delta \in \mathbb{Z}$

• Suppose $v_2(a) \ge 1$ or $v_2(b^2 - a^2) \ge 4$. This yield the quantities $c'_4 = 2^{-4}c_4 = (a^4 - 16a^2b^2 + 16b^4)$ $c'_6 = 2^{-6}c_6 = (a^2 - 2b^2)(a^4 + 32a^2b^2 - 32b^4)$

$$\Delta' = 2^{-12} \Delta = 2^{-4} (-a+b)(a+b)b^2 a^8$$

- Notice that $v_2((-a+b)(a+b)b^2a^8) = v_2(b^2-a^2) + 2v_2(b) + 8v_2(a) \ge 4$. So $2^{-12}\Delta \in \mathbb{Z}$
- We will now verify Kraus' theorem to check that an integral Weierstrass

• We want to show that $v_3(2^{-6}c_6) \neq 2$

- We want to show that $v_3(2^{-6}c_6) \neq 2$
- Consider $2^{-6}c_6 \mod 3$. We find that

$$2^{-6}c_6 = (a^2 - 2b^2)(a^4 + 32a^2b^2 - 32b^4)$$
$$\equiv a^6 + b^6 \mod 3$$

Since *a*, *b* are relatively prime and any integer not divisible by 3 to the 6th power is 1, we have that $c_6 \mod 3 \equiv 1 \text{ or } 2 \mod 3$. Thus $v_3(2^{-6}c_6) = 0 \neq 2$.

• Suppose $v_2(a) \ge 1$, then we have a = 2k for some $k \in \mathbb{Z}$

- Suppose $v_2(a) \ge 1$, then we have a = 2k for some $k \in \mathbb{Z}$
- We want to show that $v_2(2^{-4}c_4) \ge 4$ and $2^{-6}c_6 \equiv 0$ or 8 mod 32.

- Suppose $v_2(a) \ge 1$, then we have a = 2k for some $k \in \mathbb{Z}$
- We want to show that $v_2(2^{-4}c_4) \ge 4$ and $2^{-6}c_6 \equiv 0$ or 8 mod 32.
- We have that

$$v_2(2^{-4}c_4) = v_2(a^4 - 16a^2b^2 + 16b^4)$$

= $v_2(2^4k^4 - 2^6k^2b^2 + 2^4b^4)$
= $4 + v_2(k^4 - 2^2k^2b^2 + b^4) \ge 4$

- Suppose $v_2(a) \ge 1$, then we have a = 2k for some $k \in \mathbb{Z}$
- We want to show that $v_2(2^{-4}c_4) \ge 4$ and $2^{-6}c_6 \equiv 0$ or 8 mod 32.
- We have that

$$\begin{aligned} v_2(2^{-4}c_4) &= v_2(a^4 - 16a^2b^2 + 16b^4) \\ &= v_2(2^4k^4 - 2^6k^2b^2 + 2^4b^4) \\ &= 4 + v_2(k^4 - 2^2k^2b^2 + b^4) \geq 4 \end{aligned}$$

- Now consider $2^{-6}c_6 \mod 32$. This is congruent to
 - $(a^2 2b^2)(a^4 + 32a^2b^2 32b^4) \equiv 2^5(2k b^2)(k^4 + 4k^2b^2 2b^4) \mod 32$ $\equiv 0 \mod 32$

- Suppose $v_2(a) \ge 1$, then we have a = 2k for some $k \in \mathbb{Z}$
- We want to show that $v_2(2^{-4}c_4) \ge 4$ and $2^{-6}c_6 \equiv 0$ or 8 mod 32.
- We have that

$$\begin{aligned} v_2(2^{-4}c_4) &= v_2(a^4 - 16a^2b^2 + 16b^4) \\ &= v_2(2^4k^4 - 2^6k^2b^2 + 2^4b^4) \\ &= 4 + v_2(k^4 - 2^2k^2b^2 + b^4) \geq 4 \end{aligned}$$

• Now consider $2^{-6}c_6 \mod 32$. This is congruent to

$$(a^2 - 2b^2)(a^4 + 32a^2b^2 - 32b^4) \equiv 2^5(2k - b^2)(k^4 + 4k^2b^2 - 2b^4) \mod 32$$

 $\equiv 0 \mod 32$

• Now suppose $v_2(b^2 - a^2) \ge 4$, we have that a and b must both be odd. This means that $2^{-6}c_6$ is odd and so it suffices to verify $2^{-6}c_6 \equiv 3 \mod 4$. Notice that

$$\begin{split} 2^{-6}c_6 &\equiv (a^2-2b^2)(a^4+32a^2b^2-32b^4) \mod 4 \\ &\equiv (1-2)(1+32-32) \equiv 3 \mod 4 \end{split}$$

- Suppose $v_2(a) \ge 1$, then we have a = 2k for some $k \in \mathbb{Z}$
- We want to show that $v_2(2^{-4}c_4) \ge 4$ and $2^{-6}c_6 \equiv 0$ or 8 mod 32.
- We have that

$$\begin{aligned} v_2(2^{-4}c_4) &= v_2(a^4 - 16a^2b^2 + 16b^4) \\ &= v_2(2^4k^4 - 2^6k^2b^2 + 2^4b^4) \\ &= 4 + v_2(k^4 - 2^2k^2b^2 + b^4) \geq 4 \end{aligned}$$

- Now consider $2^{-6}c_6 \mod 32$. This is congruent to $(a^2 - 2b^2)(a^4 + 32a^2b^2 - 32b^4) \equiv 2^5(2k - b^2)(k^4 + 4k^2b^2 - 2b^4) \mod 32$ $\equiv 0 \mod 32$
- Now suppose $v_2(b^2 a^2) \ge 4$, we have that a and b must both be odd. This means that $2^{-6}c_6$ is odd and so it suffices to verify $2^{-6}c_6 \equiv 3 \mod 4$. Notice that

$$2^{-6}c_6 \equiv (a^2 - 2b^2)(a^4 + 32a^2b^2 - 32b^4) \mod 4$$
$$\equiv (1 - 2)(1 + 32 - 32) \equiv 3 \mod 4$$

• So Kraus' Theorem holds under the conditions $v_2(a) \ge 1$ or $v_2(b^2 - a^2) \ge 4$, so there exists an integral Weierstrass Model having discriminant $2^{-12}\Delta$.

• We will now prove we cannot have an integral Weierstrass model having discriminant $2^{-12}\Delta'$ by doing another admissible change of variables.

- We will now prove we cannot have an integral Weierstrass model having discriminant $2^{-12}\Delta'$ by doing another admissible change of variables.
- We have $a = 2^2 \hat{a}$ where $\hat{a} \in \mathbb{Z}$ (not automatic).

- We will now prove we cannot have an integral Weierstrass model having discriminant $2^{-12}\Delta'$ by doing another admissible change of variables.
- We have $a = 2^2 \hat{a}$ where $\hat{a} \in \mathbb{Z}$ (not automatic).
- So we have the following:

$$2^{-4}c'_{4} = 2^{-4}(a^{4} - 16a^{2}b^{2} + 16b^{4}) = (16\hat{a}^{4} - 16\hat{a}^{2}b^{2} + b^{4})$$

$$2^{-6}c'_{6} = 2^{-6}(a^{2} - 2b^{2})(a^{4} + 32a^{2}b^{2} - 32b^{4}) = (8\hat{a}^{2} - b^{2})(8\hat{a}^{4} + 16\hat{a}^{2}b^{2} - b^{4})$$

$$2^{-12}\Delta' = 2^{-16}3(-a + b)(a + b)b^{2}a^{8} = (-4\hat{a} + b)(4\hat{a} + b)b^{2}\hat{a}^{8}$$

- We will now prove we cannot have an integral Weierstrass model having discriminant $2^{-12}\Delta'$ by doing another admissible change of variables.
- We have $a = 2^2 \hat{a}$ where $\hat{a} \in \mathbb{Z}$ (not automatic).
- So we have the following:

$$2^{-4}c'_{4} = 2^{-4}(a^{4} - 16a^{2}b^{2} + 16b^{4}) = (16\hat{a}^{4} - 16\hat{a}^{2}b^{2} + b^{4})$$

$$2^{-6}c'_{6} = 2^{-6}(a^{2} - 2b^{2})(a^{4} + 32a^{2}b^{2} - 32b^{4}) = (8\hat{a}^{2} - b^{2})(8\hat{a}^{4} + 16\hat{a}^{2}b^{2} - b^{4})$$

$$2^{-12}\Delta' = 2^{-16}3(-a + b)(a + b)b^{2}a^{8} = (-4\hat{a} + b)(4\hat{a} + b)b^{2}\hat{a}^{8}$$

• We have that $2^{-6}c'_6 = (8\hat{a}^2 - b^2)(8\hat{a}^4 + 16\hat{a}^2b^2 - b^4)$ is odd. To check Kraus' Theorem, we must verify that $2^{-6}c'_6 \equiv 3 \mod 4$.

- We will now prove we cannot have an integral Weierstrass model having discriminant $2^{-12}\Delta'$ by doing another admissible change of variables.
- We have $a = 2^2 \hat{a}$ where $\hat{a} \in \mathbb{Z}$ (not automatic).
- So we have the following:

$$2^{-4}c'_4 = 2^{-4}(a^4 - 16a^2b^2 + 16b^4) = (16\hat{a}^4 - 16\hat{a}^2b^2 + b^4)$$

$$2^{-6}c'_6 = 2^{-6}(a^2 - 2b^2)(a^4 + 32a^2b^2 - 32b^4) = (8\hat{a}^2 - b^2)(8\hat{a}^4 + 16\hat{a}^2b^2 - b^4)$$

$$2^{-12}\Delta' = 2^{-16}3(-a + b)(a + b)b^2a^8 = (-4\hat{a} + b)(4\hat{a} + b)b^2\hat{a}^8$$

- We have that $2^{-6}c'_6 = (8\hat{a}^2 b^2)(8\hat{a}^4 + 16\hat{a}^2b^2 b^4)$ is odd. To check Kraus' Theorem, we must verify that $2^{-6}c'_6 \equiv 3 \mod 4$.
- Notice that,

$$2^{-6}c_6' = (8\hat{a}^2 - b^2)(8\hat{a}^4 + 16\hat{a}^2b^2 - b^4) \equiv (-b^2)(-b^4) \equiv 1 \mod 4 \not\equiv 3 \mod 4$$

- We will now prove we cannot have an integral Weierstrass model having discriminant $2^{-12}\Delta'$ by doing another admissible change of variables.
- We have $a = 2^2 \hat{a}$ where $\hat{a} \in \mathbb{Z}$ (not automatic).
- So we have the following:

$$2^{-4}c'_4 = 2^{-4}(a^4 - 16a^2b^2 + 16b^4) = (16\hat{a}^4 - 16\hat{a}^2b^2 + b^4)$$

$$2^{-6}c'_6 = 2^{-6}(a^2 - 2b^2)(a^4 + 32a^2b^2 - 32b^4) = (8\hat{a}^2 - b^2)(8\hat{a}^4 + 16\hat{a}^2b^2 - b^4)$$

$$2^{-12}\Delta' = 2^{-16}3(-a + b)(a + b)b^2a^8 = (-4\hat{a} + b)(4\hat{a} + b)b^2\hat{a}^8$$

- We have that $2^{-6}c'_6 = (8\hat{a}^2 b^2)(8\hat{a}^4 + 16\hat{a}^2b^2 b^4)$ is odd. To check Kraus' Theorem, we must verify that $2^{-6}c'_6 \equiv 3 \mod 4$.
- Notice that,

$$2^{-6}c_6' = (8\hat{a}^2 - b^2)(8\hat{a}^4 + 16\hat{a}^2b^2 - b^4) \equiv (-b^2)(-b^4) \equiv 1 \mod 4 \not\equiv 3 \mod 4$$

• So Kraus' Theorem does not hold. So we have that 2⁻¹²∆ is the minimal discriminant under these conditions.

• We do a similar process with the conditions a is odd and $v_2(b^2 - a^2) \le 3$ to show that $1^{-12}\Delta$ is the minimal discriminant.

- We do a similar process with the conditions a is odd and $v_2(b^2 a^2) \le 3$ to show that $1^{-12}\Delta$ is the minimal discriminant.
- The minimal discriminant of E_2 is $u^{-12}\Delta$ with $u \mid 2$. Moreover,

$$u = \begin{cases} 2 \leftarrow v_2(a) \ge 1 \text{ or } v_2(b^2 - a^2) \ge 4\\ 1 \leftarrow v_2(a) = 0 \text{ (i.e a is odd) and } v_2(b^2 - a^2) < 4 \end{cases}$$

- We do a similar process with the conditions *a* is odd and $v_2(b^2 a^2) \le 3$ to show that $1^{-12}\Delta$ is the minimal discriminant.
- The minimal discriminant of E_2 is $u^{-12}\Delta$ with $u \mid 2$. Moreover,

$$u = \begin{cases} 2 \leftarrow v_2(a) \ge 1 \text{ or } v_2(b^2 - a^2) \ge 4\\ 1 \leftarrow v_2(a) = 0 \text{ (i.e a is odd) and } v_2(b^2 - a^2) < 4 \end{cases}$$

• As we have exhausted all possibilities on a and b, we have an if and only if,

$$u = \begin{cases} 2 \iff v_2(a) \ge 1 \text{ or } v_2(b^2 - a^2) \ge 4\\ 1 \iff v_2(a) = 0 \text{ and } v_2(b^2 - a^2) < 4 \end{cases}$$

These 2 Simple Ratios May Solve One of the World's Hardest Math Problems!

Definition (ABC Triple)

Denoted P = (a, b, c), is a triple of integers a, b, c such that a, b, c are relatively prime non-zero integers and a + b = c.

Definition (ABC Triple)

Denoted P = (a, b, c), is a triple of integers a, b, c such that a, b, c are relatively prime non-zero integers and a + b = c.

Definition (Quality)

The quality of an ABC triple P = (a, b, c) is the quantity

 $q(P) = \frac{\log \max\{|a|, |b|, |c|\}}{\log rad(abc)}$

Definition (ABC Triple)

Denoted P = (a, b, c), is a triple of integers a, b, c such that a, b, c are relatively prime non-zero integers and a + b = c.

Definition (Quality)

The quality of an ABC triple P = (a, b, c) is the quantity

$$q(P) = \frac{\log \max\{|a|, |b|, |c|\}}{\log rad(abc)}$$

Definition (ABC Triple)

Denoted P = (a, b, c), is a triple of integers a, b, c such that a, b, c are relatively prime non-zero integers and a + b = c.

Definition (Quality)

The quality of an ABC triple P = (a, b, c) is the quantity

$$q(P) = \frac{\log \max\{|a|, |b|, |c|\}}{\log rad(abc)}$$

Remark We say an *ABC* triple is good if q(P) > 1 and if a, b, c are positive

Definition (ABC Triple)

Denoted P = (a, b, c), is a triple of integers a, b, c such that a, b, c are relatively prime non-zero integers and a + b = c.

Definition (Quality)

The quality of an ABC triple P = (a, b, c) is the quantity

$$q(P) = \frac{\log \max\{|a|, |b|, |c|\}}{\log rad(abc)}$$

Remark We say an *ABC* triple is good if q(P) > 1 and if a, b, c are positive

Definition (ABC Triple)

Denoted P = (a, b, c), is a triple of integers a, b, c such that a, b, c are relatively prime non-zero integers and a + b = c.

Definition (Quality)

The quality of an ABC triple P = (a, b, c) is the quantity

$$q(P) = \frac{\log \max\{|a|, |b|, |c|\}}{\log rad(abc)}$$

Remark We say an *ABC* triple is good if q(P) > 1 and if a, b, c are positive

Conjecture (ABC Conjecture)

For every $\epsilon > 0$ there are finitely many ABC triples P = (a, b, c) satisfying $q(P) > 1 + \epsilon$

Conjecture (Szpiro Conjecture)

For every $\epsilon > 0$ there exists a positive constant κ_ϵ such that for all rational elliptic curves E,

 $|\Delta_E^{min}| \le \kappa_\epsilon N_E^{6+\epsilon}$

Definition (Szpiro Ratio)

Let E be a rational elliptic curve with minimal discriminant Δ_E^{min} and associated invariants c_4 and c_6 .

 $\sigma(E) = \frac{\log|\Delta_E^{min}|}{\log N_E}$

Conjecture (Modified Szpiro Conjecture)

For every $\epsilon > 0$ there are finitely many rational elliptic curves E satisfying

 $\sigma_m(E) > 6 + \epsilon$

Conjecture (Modified Szpiro Conjecture)

For every $\epsilon > 0$ there are finitely many rational elliptic curves E satisfying

 $\sigma_m(E) > 6 + \epsilon$

Definition (Modified Szpiro Ratio)

Let E be a rational elliptic curve with minimal discriminant Δ_E^{min} and associated invariants c_4 and $c_6.$

 $\sigma_m(E) = \frac{\log \max\{|c_4^3|, c_6^2\}}{\log N_E}$

Conjecture (Modified Szpiro Conjecture)

For every $\epsilon > 0$ there are finitely many rational elliptic curves E satisfying

 $\sigma_m(E) > 6 + \epsilon$

Definition (Modified Szpiro Ratio)

Let E be a rational elliptic curve with minimal discriminant Δ_E^{min} and associated invariants c_4 and $c_6.$

 $\sigma_m(E) = \frac{\log \max\{|c_4^3|, c_6^2\}}{\log N_E}$

Conjecture (Modified Szpiro Conjecture)

For every $\epsilon > 0$ there are finitely many rational elliptic curves E satisfying

 $\sigma_m(E) > 6 + \epsilon$

Definition (Modified Szpiro Ratio)

Let E be a rational elliptic curve with minimal discriminant Δ_E^{min} and associated invariants c_4 and $c_6.$

$$\sigma_m(E) = \frac{\log \max\{|\mathbf{c}_4^3|, \mathbf{c}_6^2\}}{\log N_E}$$

Remark We say that *E* is good if $\sigma_m(E) > 6$

Conjecture (Modified Szpiro Conjecture)

For every $\epsilon > 0$ there are finitely many rational elliptic curves E satisfying

 $\sigma_m(E) > 6 + \epsilon$

Definition (Modified Szpiro Ratio)

Let E be a rational elliptic curve with minimal discriminant Δ_E^{min} and associated invariants c_4 and $c_6.$

$$\sigma_m(E) = \frac{\log \max\{|\mathbf{c}_4^3|, \mathbf{c}_6^2\}}{\log N_E}$$

Remark We say that *E* is good if $\sigma_m(E) > 6$

Conjecture (Modified Szpiro Conjecture)

For every $\epsilon > 0$ there are finitely many rational elliptic curves E satisfying

 $\sigma_m(E) > 6 + \epsilon$

Definition (Modified Szpiro Ratio)

Let E be a rational elliptic curve with minimal discriminant Δ_E^{min} and associated invariants c_4 and $c_6.$

$$\sigma_m(E) = \frac{\log \max\{|c_4^3|, c_6^2\}}{\log N_E}$$

Remark We say that *E* is good if $\sigma_m(E) > 6$ **Remark** The Modified Szpiro Conjecture is equivalent to the *ABC* Conjecture

Definition (Naive Height)

The naive height of *E* is:

$$h_{naive}(E) = \frac{1}{12} \log \max|c_4^3|, c_6^2$$

• Like mentioned before, we define the equivalence classes as

 $[(E_1(t),E_2(t),\pi(t)]\in X_0(N)(\mathbb{Q})$

• We define S as

$$S = \left\{ \frac{b}{a} \mid \gcd(a, b) = 1, 1 \le a, b \le 650 \right\}$$

Remark Important to note that $t \in S$

Isogeny Class	No. of Unique Curves	Good Elliptic Curves	Largest MSR	Smallest MSR	Lower Bound?
$X_0(6)$	3,112,892	425	7.66	2.84	
$X_0(7)$	3,112,926	2	618	2.025	2?
$X_0(8)$	2,334,693	2268	12.794	2.795	
$X_0(9)$	3,112,925	886	13.395	3.01	3?
$X_0(10)$	3,112,924	23	7.31	2.76	
$X_0(12)$	2,810,469	15,664	10.98	4.03	4?
$X_0(13)$	3,112,926	0	5.9	2.21	
$X_0(16)$	2,334,693	6759	12.79	3.37	

Table 1: Szpiro Conjecture Database

Looking at Szpiro Ratios

Naive Height

Szpiro Ratio

This research was conducted at Pomona College in Claremont, California, and this project was supported by the National Science Foundation (DMS-1659203), Pomona College, and viewers like you. Thank you.

[1] A. Barrios.

Modular curves and the modified szpiro conjecture.

[2] S. Lang.

Old and new conjectured diophantine inequalities. Bulletin of The American Mathematical Society, (1):37–75, July 1990.

[3] T. Weston.

The modular curves $x_0(11)$ and $x_1(11)$.