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Definitions

Definition (Weierstrass Equation)

A Weierstrass model is an implicit function E of the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

where each aj is a rational number.

• When E is differentiable at every point on the curve, we say that E is
non-singular.
• Conversely, when E is not differentiable everywhere, we say that E is

singular.
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Example of Non-Singular Weierstrass Model

assets/nonsingularexamples.PNG

Figure: A non-singular Weierstrass model
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Examples of Singular Curves

assets/singularexamples.PNG

Figure: Two singular curves,
y2 = x3 − 3x2 + 3x− 1 and y2 = x3 + x2.

Cornejo, Ekblad, Geist, Harrison, Loe



Elliptic Curves

Definition (Elliptic Curve)

Suppose that E is a non-singular Weierstrass equation. Intuitively, a rational elliptic curve
is the graph of E together with a pointO not on the curve that is said to be the "point at
infinity."

• We can define an elliptic curve over any arbitrary field K, but this summer
we focused on elliptic curves defined over the rational numbers.
• We can also think about the rational points on elliptic curves!

Definition (Q-rational Points)

The Q-rational points are

E(Q) =
{

(x, y) ∈ Q2 | y2 + a1xy + a3y = x3 + a2x2 + a4x + a6
}

Q-rational points
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The Group Law

We can define a group

Definition

Let E be an elliptic curve, and let P and Q be rational points on E. We define a group (E,
⊕

)
by drawing a secant line through P,Q. R is where the secant line intersects E. P

⊕
Q is the

intersection of E and the secant line through R,OE .
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The Group Law

Figure: Group Law on Elliptic Curves

Cornejo, Ekblad, Geist, Harrison, Loe



The Group Law

The identity is OE.

P
⊕

P is found not with a secant line, but with a tangent line.
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Torsion Subgroup

Definition (Torsion Subgroup)

Let G be a group. The subgroup of G containing all elements of finite order in G is called
the torsion subgroup of G and is denoted by Gtors.

Elliptic curves with nontrivial torsion subgroups are worthy of study

Theorem (Mazur’s Torsion Theorem)

Let E be a rational elliptic curve and let CN denote the cyclic group of N elements. Then

E(Q)tors ∼=

{
CN for N = 1, 2, . . . , 10, 12
C2 × C2N for N = 1, 2, 3, 4.

Remark If we define an elliptic curve over two different fields, it is possible
that the cyclic subgroups are different.
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Isomorphism

Definition (c4, c6,∆)

We define c4, c6,∆ as the following:

c4 = a4
1 + 8a2

1a2 − 24a3a1 + 16a2
2 − 48a4

c6 = −
(
a2
1 + 4a2

)3
+ 36

(
a2
1 + 4a2

)
(2a4 + a1a3)− 216

(
a2
3 + 4a6

)
∆ =

c34 − c26
1728

, (we call ∆ the discriminant of E)

Definition (Isomorphism)

We say that φ : G→ H is an isomorphism if φ preserves group structure.

Definition

We define the j-invariant of an elliptic curve E to be

j =
c34
∆

Definition (C-Isomorphism)

We say that E is C-isomorphic to E′ if and only if j = j′ , where j is the j-invariant of E and j′
is the j-invariant of E′.
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Q− Isomorphisms

• When the j-invariants of two elliptic curves are the same we can say they
are isomorphic over C. However, this does not mean they are isomorphic
over Q.

y2 = x3 + 1 and y2 = x3 − 1 have the same j-invariant of zero, but they are
not Q-isomorphic.
• Instead, we find that if we map (x, y) 7→ (i2x, i3y), and E1, E2 are isomorphic

over Q(i)
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The Admissible Change of Variables

Proposition

Let K be a field, and E and E′ be elliptic curves defined by a Weierstrass model. If φ : E → E′
is a K-isomorphism such that φ(OE) = φ(OE′ ), then φ(x, y) = (u2x + r, u3y + u2sx + w)
where u, s, r,w ∈ K.

Remark Notice that r and w translate the elliptic curve, s scales the y value,
and u scales both the x and y values.

Remark If ∆, c4, c6 are associated to E and ∆′, c′4, c′6 are associated to E′,
then we have the relations:

∆′ = u−12∆, c′6 = u−6c6, c′4 = u−4c4
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Applications

Example

Let E1 and E2 be elliptic curves defined over the rational numbers

E1 : y2 + xy + y = x3 + x2 + x + 1

E2 : y2 +
27
5

xy +
51
125

y = x3 − 157
25

x2 − 19
25

x− 9
3125

There is an isomorphism φ : E1 ↔ E2 by (x, y) 7→ (u2x + r, u3y + u2sx + w) where
u = 5, s = 8, r = 13, t = 21.

• Recall that the j-invariant fails for Q-isomorphisms.
The admissible change of variables provides us with a useful way to
translate over Q-isomorphic curves.
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Global Minimal Model and Minimal Discriminant

Definition

Let E be a rational elliptic curve given by

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

We say Emin is a global minimal model of E if

• a1, a2, a3, a4, a6, c4, c6 , and ∆ are integers
• |∆| is minimal over all Q-isomorphic elliptic curves of E.

Remark We call ∆ the minimal discriminant of Emin and denote it by ∆min.
Moreover, the quantities c4 and c6 of a global model are called the associated
quantities to a minimal model.
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Additive Reduction and Semistable

Let E be a rational elliptic curve and let p be a prime.

Definition (Additive Reduction)

If p divides gcd(c4,∆) then we say that E has additive reduction at p

Definition (Semistable)

If p does not divide gcd(c4,∆) then we say that E is semistable at a point p. We call E
semistable if E is semistable at all primes.
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The Conductor

Definition (The Conductor)

We define the conductor of a rational elliptic curve E to be

NE =
∏

p|∆min
E

pfp

Where fp =

{
1 if E is semistable at p
2 + δp if E has additive reduction at p

and δ is a function that depends on the primes.

For p ≥ 5, δp = 0. For p = 2, δp ≤ 6 and for p = 3, δp ≤ 3.

Remark If E is semistable, then NE = rad(∆min
E ).
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Isogeny

Definition

A Q-isogeny between two elliptic curves E1 and E2 is a morphism ϕ : E1 → E2 where ϕ is
defined over Q. E1 and E2 are said to be isogenous

Definition

If two elliptic curves, E1 and E2 , are isogenous then NE1 = NE2

Proposition

We say two curves are in the same isogeny class if they are isogenous.
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Reduced Minimal Model

Definition (Reduced minimal model)

Let E be a rational elliptic curve. The reduced minimal model of E is given by a Weierstrass
model

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

which is a global minimal model of E such that a1, a3 ∈ {0, 1} and a2 ∈ {−1, 0, 1}

Note: The reduced minimal model of a rational elliptic curve is unique!
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Definition (p-adic valuation)

Let p be a prime. The p-adic valuation
vp : Z→ Z≥0 ∪ {∞}

is defined as

vp(n) =

{
max{v ∈ Z≥0 : pv | n} if n 6= 0
∞ if n = 0.

The p-adic valuation of an integer n can be thought of intuitively as the highest
power of p occurring within the prime power decomposition of n.
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Example (vp(24) for p = 2, 3, and 5)

v2(24) = v2(23 · 31) v3(24) = v3(23 · 31) v5(24) = v5(23 · 31)

= 3 = 1 = ?

There are no powers of 5 contained in 24, therefore we have that
v5(24) = 0.

Remark We have the identity vp(ab) = vp(a) + vp(b), where a, b are integers
(or, integral-valued functions).
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Kraus’ Theorem

Theorem (Kraus)

Let α, β, and γ be integers such that α3 − β2 = 1728γ , with γ 6= 0. Then there exists a
rational elliptic curve E given by an integral Weierstrass equation having invariants c4 = α
and c6 = β if and only if the following hold:

(i) v3(β) 6= 2
(ii) either β ≡ −1 mod 4 or both v2(α) ≥ 4 and β ≡ 0 or 8 mod 32
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Quadratic Twists

Definition

We say two elliptic curves E and E′ are twists of each other if j(E) = j(E′)

We use the quadratic twist in order to truly classify the minimal discriminants of
rational elliptic curves, as they give the full picture of the equivalence classes in
X0(N)
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Visualizing the Twist

Figure: Two Quadratic Twists,
y2 = x3 + 1 and y2 = x3 − 1.
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X0(N)

Definition (The Modular Curve X0(N))

The Modular Curve X0(N) for N ≥ 2 parameterizes isomorphism classes of triples
(E, E′, π) where π : E → E′ is an isogeny with ker(π) ∼= CN.

Definition

By an isomorphism class of triples we mean that (E1, E′1, π1) ∼ (E2, E′2, π2) if and only if
there are isomorphisms ϕ : E1 → E2 , ϕ′ : E′1 → E′2 such that π2 ◦ ϕ = ϕ′ ◦ π1

Remark This definition is not the one found in the literature, these have been
translated into the ones above
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Parametrizing Elliptic Curves

• We have that the modular curve X0(N) is genus 0 if and only if
N = 1, 2, · · · , 10, 12, 13, 16, 18, 25.

Theorem

Let X0(N) be a genus 0 modular curve. Then there is a birational map ϕ : P1(Q)→ X0(N)
defined by ϕ(t : 1) = (E1(t), E2(t), πt) with the property that if t ∈ Q then E1(t) and E2(t) are
elliptic curves over Q with πt : E1(t)→ E2(t) as a Q-isogeny with kerπt ∼= CN

• Recall that intuitively we have P1(Q) = Q ∪ {O}
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Five Students Performed Math
Research One Summer, Not Even

COLLEGE Professors Expected What
Happened Next!
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The Results!

Theorem

Let a and b be relatively prime integers EN,j be as defined above and suppose that

f5 = 125a2 + 22ab + b2 is fourth-power free if N = 5
f7 = 49a2 + 13ab + b2 is sixth-power free if N = 7
f13 =

(
13a2 + 5ab + b2) (13a2 + 6ab + b2) is sixth-power free if N = 13

The minimal discriminant of EN,j is u−12
N,j ∆N,j where uN,j is one of the possibilities given

below
(N, 1) (5, 1) (6, 1) (7, 1) (8, 1) (9, 1) (13, 1)

uN,1 divides 50 6 98 8 9 26

(N, 2) (5, 2) (6, 2) (7, 2) (8, 2) (9, 2) (13, 2)
uN,2 divides 10 4 14 2 3 26
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Theorem

Moreover, there are necessary and sufficient conditions on a, b to determine
exactly the value of uN,j as summarized in the following tables
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Theorem
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We Found the Minimal Discriminant of
X0(8) Using THESE Crazy Techniques!
You Won’t Believe How We Got ∆min

E2 !
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Parameterization of E1 and E2 in X0(8)

• Define E1(t) as the following:

E1 : y2 = x3 − 27a1
4(t)x− 54a1

6(t)

Where a1
4 = t4 + 60 t3 + 134 t2 + 60 t + 1 and

a1
6 =

(
t4 − 132 t3 − 250 t2 − 132 t + 1

)(
t2 + 6 t + 1

)
• Similarly define E2(t) as:

E2 : y2 = x3 − 27a2
4(t)x− 54a2

6(t)

where a2
4 = 16 t4 − 16 t2 + 1 and a2

6 =
(
32 t4 − 32 t2 − 1

)(
2 t2 − 1

)
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E2 in X0(8) as an Example

Take (E1, E2, π) ∈ X0(8). We have that E2 can be parameterized by rational point
t = b

a (where a, b are coprime) as the following:

y2 = x3+

(
−27a4 + 432a2b2 − 432b4

a4

)
x+
−54a6 − 1620a4b2 + 5184a2b4 − 3456b6

a6

Theorem

The minimal discriminant of E2 is u−12∆ with u | 2. Moreover,

u =

{
2 if and only if v2(a) ≥ 1 or v2(b2 − a2) ≥ 4
1⇐⇒ v2(a) = 0 and v2(b2 − a2) < 4
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Finding the possible GCD’s between invariants

Before beginning this proof we will take a small detour into explaining the
process of finding the GCD’s

Definition (The Euclidean Algorithm)

Let R be an integral domain (recall an integral domain has no zero-divisors), and let
a, b ∈ R with b 6= 0. Then R is a Euclidean Domain if there exists some q, r ∈ R such that:

a = qb + r

Remark There is prime factorization in a Euclidean Domain

Theorem (Bezout’s Identity)

Let R be a Euclidean domain, a, b be non-zero elements of R, and d = rn , the last nonzero
prime factor for a and b. Then d is the greatest common divisor of a and b and there are
elements x, y ∈ R such that d = ax + by

Using the Euclidean Algorithm and Wolfram Mathematica, we obtained the
greatest common denominators for invariants of various curves and X0(8).
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Proof

Proposition

For E isomorphic to E′ , u4 divides the greatest common divisor of the invariants associated
with E. Since u4 divides the gcd’s between the invariants we find that u | 8

• We apply the change of variables with (x, y) 7→ (( 3
a )2x, ( 3

a )3y). There is an
integral Weierstrass Model F isomorphic to E2 having

c4 = 24(a4 − 16a2b2 + 16b4)

c6 = 26(a2 − 2b2)(a4 + 32a2b2 − 32b4)

∆8,2 = 28(−a + b)(a + b)b2a8

as its invariants c4, c6, and ∆ respectively.
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Recall Kraus’ Theorem

Theorem (Kraus)

Let α, β, and γ be integers such that α3 − β2 = 1728γ , with γ 6= 0. Then there exists a
rational elliptic curve E given by an integral Weierstrass equation having invariants c4 = α
and c6 = β if and only if the following hold:

(i) v3(β) 6= 2
(ii) either β ≡ −1 mod 4 or both v2(α) ≥ 4 and β ≡ 0 or 8 mod 32
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Proof

• Suppose v2(a) ≥ 1 or v2(b2 − a2) ≥ 4. This yield the quantities

c′4 = 2−4c4 = (a4 − 16a2b2 + 16b4)

c′6 = 2−6c6 = (a2 − 2b2)(a4 + 32a2b2 − 32b4)

∆′ = 2−12∆ = 2−4(−a + b)(a + b)b2a8

• Notice that v2((−a + b)(a + b)b2a8) = v2(b2 − a2) + 2v2(b) + 8v2(a) ≥ 4.
So 2−12∆ ∈ Z
• We will now verify Kraus’ theorem to check that an integral Weierstrass
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Checking Part i) of Krauss’ Theorem

• We want to show that v3(2−6c6) 6= 2

• Consider 2−6c6 mod 3. We find that

2−6c6 = (a2 − 2b2)(a4 + 32a2b2 − 32b4)

≡ a6 + b6 mod 3

Since a, b are relatively prime and any integer not divisible by 3 to the 6th
power is 1, we have that c6 mod 3 ≡ 1 or 2 mod 3. Thus
v3(2−6c6) = 0 6= 2.
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Checking Part ii) of Krauss’ Theorem

• Suppose v2(a) ≥ 1, then we have a = 2k for some k ∈ Z

• We want to show that v2(2−4c4) ≥ 4 and 2−6c6 ≡ 0 or 8 mod 32.
• We have that

v2(2−4c4) = v2(a4 − 16a2b2 + 16b4)

= v2(24k4 − 26k2b2 + 24b4)

= 4 + v2(k4 − 22k2b2 + b4) ≥ 4

• Now consider 2−6c6 mod 32. This is congruent to
(a2 − 2b2)(a4 + 32a2b2 − 32b4) ≡ 25(2k − b2)(k4 + 4k2b2 − 2b4) mod 32

≡ 0 mod 32

• Now suppose v2(b2 − a2) ≥ 4, we have that a and b must both be odd. This
means that 2−6c6 is odd and so it suffices to verify 2−6c6 ≡ 3 mod 4.
Notice that

2−6c6 ≡ (a2 − 2b2)(a4 + 32a2b2 − 32b4) mod 4
≡ (1− 2)(1 + 32− 32) ≡ 3 mod 4

• So Kraus’ Theorem holds under the conditions v2(a) ≥ 1 or v2(b2 − a2) ≥ 4,
so there exists an integral Weierstrass Model having discriminant 2−12∆.
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No Other Admissible Change of Variables

• We will now prove we cannot have an integral Weierstrass model having
discriminant 2−12∆′ by doing another admissible change of variables.

• We have a = 22â where â ∈ Z (not automatic).
• So we have the following:

2−4c′4 = 2−4(a4 − 16a2b2 + 16b4) = (16â4 − 16â2b2 + b4)

2−6c′6 = 2−6(a2 − 2b2)(a4 + 32a2b2 − 32b4) = (8â2 − b2)(8â4 + 16â2b2 − b4)

2−12∆′ = 2−163(−a + b)(a + b)b2a8 = (−4â + b)(4â + b)b2â8

• We have that 2−6c′6 = (8â2 − b2)(8â4 + 16â2b2 − b4) is odd. To check
Kraus’ Theorem, we must verify that 2−6c′6 ≡ 3 mod 4.
• Notice that,

2−6c′6 = (8â2−b2)(8â4+16â2b2−b4) ≡ (−b2)(−b4) ≡ 1 mod 4 6≡ 3 mod 4

• So Kraus’ Theorem does not hold. So we have that 2−12∆ is the minimal
discriminant under these conditions.
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Kraus’ Theorem, we must verify that 2−6c′6 ≡ 3 mod 4.
• Notice that,
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No Other Admissible Change of Variables

• We will now prove we cannot have an integral Weierstrass model having
discriminant 2−12∆′ by doing another admissible change of variables.
• We have a = 22â where â ∈ Z (not automatic).
• So we have the following:

2−4c′4 = 2−4(a4 − 16a2b2 + 16b4) = (16â4 − 16â2b2 + b4)

2−6c′6 = 2−6(a2 − 2b2)(a4 + 32a2b2 − 32b4) = (8â2 − b2)(8â4 + 16â2b2 − b4)

2−12∆′ = 2−163(−a + b)(a + b)b2a8 = (−4â + b)(4â + b)b2â8
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2−6c′6 = (8â2−b2)(8â4+16â2b2−b4) ≡ (−b2)(−b4) ≡ 1 mod 4 6≡ 3 mod 4

• So Kraus’ Theorem does not hold. So we have that 2−12∆ is the minimal
discriminant under these conditions.

Cornejo, Ekblad, Geist, Harrison, Loe



Concluding Steps

• We do a similar process with the conditions a is odd and v2(b2 − a2) ≤ 3 to
show that 1−12∆ is the minimal discriminant.

• The minimal discriminant of E2 is u−12∆ with u | 2. Moreover,

u =

{
2← v2(a) ≥ 1 or v2(b2 − a2) ≥ 4
1← v2(a) = 0 (i.e a is odd) and v2(b2 − a2) < 4

• As we have exhausted all possibilities on a and b, we have an if and only if,

u =

{
2⇐⇒ v2(a) ≥ 1 or v2(b2 − a2) ≥ 4
1⇐⇒ v2(a) = 0 and v2(b2 − a2) < 4
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These 2 Simple Ratios May Solve One
of the World’s Hardest Math Problems!
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The ABC Conjecture

Definition (ABC Triple)

Denoted P = (a, b, c), is a triple of integers a, b, c such that a, b, c are relatively prime
non-zero integers and a + b = c.

Definition (Quality)

The quality of an ABC triple P = (a, b, c) is the quantity

q(P) =
log max{|a|, |b|, |c|}

log rad(abc)

Remark We say an ABC triple is good if q(P) > 1 and if a, b, c are positive

Conjecture (ABC Conjecture)

For every ε > 0 there are finitely many ABC triples P = (a, b, c) satisfying q(P) > 1 + ε
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Szpiro Ratio

Conjecture (Szpiro Conjecture)

For every ε > 0 there exists a positive constant κε such that for all rational elliptic curves E,

|∆min
E | ≤ κεN

6+ε
E

Definition (Szpiro Ratio)

Let E be a rational elliptic curve with minimal discriminant ∆min
E and associated invariants

c4 and c6.

σ(E) =
log|∆min

E |
log NE
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Modified Szpiro Ratio

Conjecture (Modified Szpiro Conjecture)

For every ε > 0 there are finitely many rational elliptic curves E satisfying

σm(E) > 6 + ε

Definition (Modified Szpiro Ratio)

Let E be a rational elliptic curve with minimal discriminant ∆min
E and associated invariants

c4 and c6.

σm(E) =
log max{|c34|, c

2
6}

log NE

Remark We say that E is good if σm(E) > 6
Remark The Modified Szpiro Conjecture is equivalent to the ABC
Conjecture
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Definition (Naive Height)

The naive height of E is:
hnaive(E) =

1
12

log max|c34|, c
2
6
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Creating a Database of Elliptic Curves

• Like mentioned before, we define the equivalence classes as

[(E1(t), E2(t), π(t)] ∈ X0(N)(Q)

• We define S as

S =

{
b
a

∣∣∣∣ gcd(a, b) = 1, 1 ≤ a, b ≤ 650
}

Remark Important to note that t ∈ S

Cornejo, Ekblad, Geist, Harrison, Loe



Szpiro Ratio Table
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Looking at Szpiro Ratios
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Naive Height

Figure: X0(8)

Figure: X0(12)
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Szpiro Ratio

Figure: X0(8)

Figure: X0(12)
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Modified Szpiro Ratio

Figure: X0(8)
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Figure: X0(12)
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Thanks
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